定義在區(qū)間(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),則f(x)=________.


分析:因為2f(x)-f(-x)=lg(x+1),用-x代替x,得,2f(-x)-f(x)=lg(-x+1),兩式聯(lián)立消去f(-x),就可求出
f(x).
解答:∵2f(x)-f(-x)=lg(x+1),①
∴2f(-x)-f(x)=lg(-x+1),②
①×2+①,得,3f(x)=2lg(x+1)+lg(1-x)
∴f(x)=
故答案為
點評:本題主要考查利用方程的思想求函數(shù)解析式,關(guān)鍵是如何消掉2f(x)-f(-x)=lg(x+1)中的f(-x).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請舉一例:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)定義在區(qū)間(-1,1)上,,對任意x、y∈(-1,1),恒有成立,又?jǐn)?shù)列an滿足,設(shè)
(1)在(-1,1)內(nèi)求一個實數(shù)t,使得
(2)證明數(shù)列f(an)是等比數(shù)列,并求f(an)的表達式和的值;
(3)是否存在m∈N*,使得對任意n∈N*,都有成立?若存在,求出m的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)定義在區(qū)間(-1,1)上,,對任意x、y∈(-1,1),恒有成立,又?jǐn)?shù)列an滿足,設(shè)
(1)在(-1,1)內(nèi)求一個實數(shù)t,使得;
(2)證明數(shù)列f(an)是等比數(shù)列,并求f(an)的表達式和的值;
(3)是否存在m∈N*,使得對任意n∈N*,都有成立?若存在,求出m的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案