分析 根據(jù)條件畫出圖形,并連接AC,由中位線的性質(zhì)即可得到EF∥HG,并且|EF|=|HG|,并由圖形看出向量$\overrightarrow{EF}$,$\overrightarrow{HG}$同向,這樣即可得到$\overrightarrow{EF}=\overrightarrow{HG}$.
解答 證明:如圖,
連接AC,E,F(xiàn)分別是AB,BC的中點;
即EF為△ABC的中位線;
∴EF∥AC,且$|EF|=\frac{|AC|}{2}$;
同理,HG∥AC,且$|HG|=\frac{|AC|}{2}$;
∴EF∥HG,且|EF|=|HG|,且向量$\overrightarrow{EF}$,$\overrightarrow{HG}$方向相同;
∴$\overrightarrow{EF}=\overrightarrow{HG}$.
點評 考查三角形中位線的性質(zhì),平行線的傳遞性,相等向量的概念.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 互相垂直的兩條直線的直觀圖一定是互相垂直的兩條直線 | |
B. | 梯形的直觀圖可能是平行四邊形 | |
C. | 矩形的直觀圖可能是梯形 | |
D. | 正方形的直觀圖可能是平行四邊形. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪(2,+∞) | B. | (-∞,1-$\sqrt{3}$]∪[1+$\sqrt{3}$,+∞) | C. | (-∞,1-$\sqrt{3}$]∪[2,+∞) | D. | (-∞,0)∪[1+$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com