4.如圖,面積為10的矩形中有一封閉曲線圍成的陰影區(qū)域,在矩形中隨機(jī)撒一粒種子,它落在陰影區(qū)域內(nèi)的概率為$\frac{3}{5}$,則陰影區(qū)域的面積為6.

分析 本題考查的知識(shí)點(diǎn)是根據(jù)幾何概型的意義進(jìn)行模擬試驗(yàn),計(jì)算不規(guī)則圖形的面積,關(guān)鍵是要根據(jù)幾何概型的計(jì)算公式,列出豆子落在陰影區(qū)域內(nèi)的概率與陰影部分面積及矩形面積之間的關(guān)系.

解答 解:由題意,$\frac{{S}_{陰影}}{{S}_{矩形}}$=$\frac{3}{5}$,
∴S陰影=10×$\frac{3}{5}$=6,
故答案為6.

點(diǎn)評(píng) 利用幾何概型的意義進(jìn)行模擬試驗(yàn),估算不規(guī)則圖形面積的大小,關(guān)鍵是要根據(jù)幾何概型的計(jì)算公式,探究不規(guī)則圖形面積與已知的規(guī)則圖形的面積之間的關(guān)系,及它們與模擬試驗(yàn)產(chǎn)生的概率(或頻數(shù))之間的關(guān)系,并由此列出方程,解方程即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.雙曲線x2-y2=1的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=-1的距離之和等于4的動(dòng)點(diǎn)的軌跡為曲線C,關(guān)于曲線C的幾何性質(zhì),給出下列四個(gè)結(jié)論:
①曲線C的方程為x2=4y;                                ②曲線C關(guān)于y軸對(duì)稱  
③若點(diǎn)P(x,y)在曲線C上,則|y|≤2;          ④若點(diǎn)P在曲線C上,則1≤|PF|≤4
其中,所有正確結(jié)論的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,已知AB=2,AC=6,∠BAC=60°,點(diǎn)D,E分別在邊AB,AC上,且$\overrightarrow{AB}$=2$\overrightarrow{AD}$,$\overrightarrow{AC}$=5$\overrightarrow{AE}$,
(1)若$\overrightarrow{BF}$=-$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{AC}$,求證:點(diǎn)F為DE的中點(diǎn);
(2)在(1)的條件下,求$\overrightarrow{BA}$•$\overrightarrow{EF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從1,2,3,4,5,6這6個(gè)數(shù)字中任取三個(gè)數(shù)字,其中:①至少有一個(gè)偶數(shù)與都是偶數(shù);②至少有一個(gè)偶數(shù)與都是奇數(shù);③至少有一個(gè)偶數(shù)與至少有一個(gè)奇數(shù);④恰有一個(gè)偶數(shù)與恰有兩個(gè)偶數(shù).上述事件中,是互斥但不對(duì)立的事件是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個(gè)生物研究性學(xué)習(xí)小組,為了研究平均氣溫與一天內(nèi)某豆類胚芽生長之間的關(guān)系,他們分別記錄了4月6日至4月11日的平均氣溫x(℃)與該豆類胚芽一天生長的長度y(mm),得到如下數(shù)據(jù):
日期4月6日4月7日4月8日4月9日4月10日4月11日
平均氣溫x(℃)1011131286
一天生長的長度y(mm)222529261612
該小組的研究方案是:先從這六組數(shù)據(jù)中選取6日和11日的兩組數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),用剩下的4組數(shù)據(jù)即:7日至10日的四組數(shù)據(jù)求出線性回歸方程.
(1)請(qǐng)按研究方案求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)用6日和11日的兩組數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選的檢驗(yàn)數(shù)據(jù)的誤差不超過1mm,則認(rèn)為該方程是理想的)
參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,則二面角A-PB-E的大小為(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.九江氣象臺(tái)統(tǒng)計(jì),5月1日潯陽區(qū)下雨的概率為$\frac{4}{15}$,刮風(fēng)的概率為$\frac{2}{15}$,既刮風(fēng)又下雨的概率為$\frac{1}{10}$,設(shè)A為下雨,B為刮風(fēng),那么P(A|B)=( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計(jì)算:sin43°sin17°-cos43°cos17°=$-\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案