若直線l:a1x+b1y=1與直線l2:a2x+b2y=1的交點(diǎn)為(2,-1),則2a1-b1=________,2a2-b2=________.

答案:1,1
解析:

∵點(diǎn)(2,-1)在l1上,∴2a1-b1=1.同理,2a2-b2=1.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定下列四個(gè)命題:
①若
1
a
1
b
<0
,則b2>a2;
②已知直線l,平面α,β為不重合的兩個(gè)平面.若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=-1.
其中為真命題的是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:崇文區(qū)二模 題型:填空題

給定下列四個(gè)命題:
①若
1
a
1
b
<0
,則b2>a2;
②已知直線l,平面α,β為不重合的兩個(gè)平面.若l⊥α,且α⊥β,則lβ;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=-1.
其中為真命題的是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):創(chuàng)新題(1)(解析版) 題型:解答題

給定下列四個(gè)命題:
①若,則b2>a2;
②已知直線l,平面α,β為不重合的兩個(gè)平面.若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a,則a1+a2+a3+a4+a5=-1.
其中為真命題的是    .(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省高考數(shù)學(xué)壓軸卷1(理科)(解析版) 題型:解答題

給定下列四個(gè)命題:
①若,則b2>a2;
②已知直線l,平面α,β為不重合的兩個(gè)平面.若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a,則a1+a2+a3+a4+a5=-1.
其中為真命題的是    .(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

給定下列四個(gè)命題:
①若,則b2>a2;
②已知直線l,平面α,β為不重合的兩個(gè)平面.若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a,則a1+a2+a3+a4+a5=-1.
其中為真命題的是    .(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案