(12分)
如圖,PA⊥平面ABC,平面PAB⊥平面PBC  求證:AB⊥BC   
                                                                 
證明:過A作AD⊥PB于D,由平面PAB⊥平面PBC ,
得AD⊥平面PBC,故AD⊥BC,
又BC⊥PA,故BC⊥平面PAB,所以BC⊥AB
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正三角形ABC中, D,E,F(xiàn)分別為AB,BC,AC的中點,G,H,I分別為DE,F(xiàn)C,EF的中點,將△ABC沿DE,EF,DF折成三棱錐,則異面直線BG與IH所成的角為
A.B.a(chǎn)rccosC.D.a(chǎn)rccos

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三棱錐的棱長都相等,分別是棱的中點,則所成的角為 (   ) .     
                              
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)
如圖,在四棱錐中,底面為正方形,平面,已知,為線段上的動點.

(Ⅰ)若的中點,求證:平面
(Ⅱ)若二面角與二面角的大小相等,求長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ) 證明:OD//平面ABC;
(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?
若能,請指出點N的位置,并加以證明;
若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正四面體ABCD的面上,到棱AB以及C、D兩點的距離都相等的點共有       (   )
A.1個                       B.2個                       C.3個                       D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
空間四邊形中,,分別是的中點,,求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一條直線與一個平面成720角,則這條直線與這個平面內(nèi)不經(jīng)過斜足的直線所成角中最大角等于(     )
A. 720B.900C. 1080 D.1800

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,為正方體的棱的中點,為棱上一點,,則        (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案