已知函數(shù)
⑴若為的極值點(diǎn),求的值;
⑵若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值;
⑶當(dāng)時(shí),若在區(qū)間上不單調(diào),求的取值范圍.
⑴或2.⑵.
解析試題分析:⑴,∵是的極值點(diǎn),∴,即,解得或2.
⑵∵在上.∴,∵在上,∴,又,∴,∴,解得,∴,由可知和是的極值點(diǎn).∵,∴在區(qū)間上的最大值為8.
⑶因?yàn)楹瘮?shù)在區(qū)間不單調(diào),所以函數(shù)在上存在零點(diǎn).而的兩根為,,區(qū)間長為,∴在區(qū)間上不可能有2個(gè)零點(diǎn).所以,即.∵,∴.又∵,∴.
考點(diǎn):本題主要考查導(dǎo)數(shù)計(jì)算及其幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的最值。
點(diǎn)評(píng):典型題,在給定區(qū)間,導(dǎo)數(shù)值非負(fù),函數(shù)是增函數(shù),導(dǎo)數(shù)值為非正,函數(shù)為減函數(shù)。求極值的步驟:計(jì)算導(dǎo)數(shù)、求駐點(diǎn)、討論駐點(diǎn)附近導(dǎo)數(shù)的正負(fù)、確定極值、計(jì)算得到函數(shù)值比較大小。切線的斜率為函數(shù)在切點(diǎn)的導(dǎo)數(shù)值。(3)將條件轉(zhuǎn)化成函數(shù)在上存在零點(diǎn),體現(xiàn)了轉(zhuǎn)化與化歸思想的應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)對于任意實(shí)數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個(gè)實(shí)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),設(shè)函數(shù)的3個(gè)極值點(diǎn)為,且.
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對任意的恒成立,求實(shí)數(shù)的值;
(3)在(2)的條件下,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)在處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)在只有一個(gè)零點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com