已知定點(diǎn)A(4,0),圓C:x2+y2=4上有一動(dòng)點(diǎn)P,設(shè)M為線段AP上一點(diǎn),且滿足
AM
=2
MP
,求動(dòng)點(diǎn)M的軌跡方程.
考點(diǎn):軌跡方程
專題:計(jì)算題,直線與圓
分析:設(shè)出動(dòng)點(diǎn)坐標(biāo),利用向量條件確定坐標(biāo)之間的關(guān)系,利用P在圓上,可得結(jié)論.
解答: 解:設(shè)點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)P(m,n),則m2+n2=4.
∵動(dòng)點(diǎn)M滿足
AM
=2
MP
,
∴(x-4,y)=2(m-x,n-y)
∴m=
3
2
x-2,n=
3
2
y,
∵m2+n2=4,
∴(
3
2
x-2)2+(
3
2
y)2=4
∴(x-
4
3
)2+y2=
16
9
點(diǎn)評(píng):本題考查點(diǎn)的軌跡方程、相等向量的性質(zhì)、代入法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=x+
4
x
(x>0)的最小值是( 。
A、2B、1C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f (x)=
1
2x
-cosx,若
π
3
<a<b<
6
,則( 。
A、f(a)>f(b)
B、f (a)<f(b)
C、f (a)=f (b)
D、f (a) f (b)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某政府準(zhǔn)備建造一個(gè)橢圓游泳池(a>b),橢圓的一個(gè)焦點(diǎn)到橢圓上的點(diǎn)的最大距離是最小距離的4倍.
(1)求此游泳池所在橢圓的離心率;
(2)已知橢圓的焦距為120米,在橢圓的長(zhǎng)軸上的M1、M2處設(shè)計(jì)兩個(gè)噴水頭,使分出的水花形成有相等半徑的圓M1,圓M2,且圓M1與圓M2外切,同時(shí)噴出的水不能落到橢圓形游泳池之外,試求兩圓的最大半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們將不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)稱為切點(diǎn).解決下列問(wèn)題:已知拋物線x2=2py(p>0)上的點(diǎn)(x0,3)到焦點(diǎn)的距離等于4,直線l:y=kx+b與拋物線相交于不同的兩點(diǎn)A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值).設(shè)線段AB的中點(diǎn)為D,與直線l:y=kx+b平行的拋物線的切點(diǎn)為C.
(1)求出拋物線方程,并寫(xiě)出焦點(diǎn)坐標(biāo)、準(zhǔn)線方程;
(2)用k、b表示出C點(diǎn)、D點(diǎn)的坐標(biāo),并證明CD垂直于x軸;
(3)求△ABC的面積,證明△ABC的面積與k、b無(wú)關(guān),只與h有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明
1
2
+
1
3
+
1
4
+…+
1
2n-1
n-2
2
.其中n≥2,n∈N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=(n-
a
3
2+2,若數(shù)列﹛an}為遞增數(shù)列,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的兩個(gè)焦點(diǎn)坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0),雙曲線C上一點(diǎn)P到F1,F(xiàn)2距離差的絕對(duì)值等于2.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過(guò)點(diǎn)M(2,1)作直線l交雙曲線C的右支于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線l的方程.
(3)已知定點(diǎn)G(1,2),點(diǎn)D是雙曲線C右支上的動(dòng)點(diǎn),求|DF1|+|DG|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若在定義域存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2bx-4a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案