已知異面直線l1和l2,l1⊥l2,MN是l1和l2的公垂線,MN = 4,A∈l1,B∈l2,AM = BN = 2,O是MN中點(diǎn).① 求l1與OB的成角.②求A點(diǎn)到OB距離.
本題若將條件放入立方體的“原型”中,抓住“一個(gè)平面四條線”的圖形特征及“直線平面垂直”的關(guān)鍵性條件,問題就顯得簡(jiǎn)單明了.
(1)如圖,畫兩個(gè)相連的正方體,將題目條件一一標(biāo)在圖中.
OB在底面上射影NB⊥CD,由三垂線定理,OB⊥CD,又CD∥MA,
∴ OB⊥MA 即OB與l1成90°
(2)連結(jié)BO并延長交上底面于E點(diǎn).
|
∴ ME = 2,又 ON = 2
∴ .
作AQ⊥BE,連結(jié)MQ.
對(duì)于平面EMO而言,AM、AQ、MQ分別為垂線、斜線、斜線在平面內(nèi)的射影,由三垂線逆定理得MQ⊥EO.
在Rt△MEO中,.
評(píng)述:又在Rt△AMQ中,,本題通過補(bǔ)形法使較困難的問題變得明顯易解;求點(diǎn)到直線的距離,仍然是利用直線與平面垂直的關(guān)鍵條件,抓住“一個(gè)面四條線”的圖形特征來解決的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市金山中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省汕頭市金山中學(xué)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com