【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程: ,計算二次函數(shù)回歸模型和線性回歸模型的分別約為0.75和0.97,請用說明選擇個回歸模型更合適,并用此模型預(yù)測超市廣告費(fèi)支出為8萬元時的銷售額.
參考數(shù)據(jù): .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1,2,3,4的四個球,現(xiàn)從甲乙兩個盒子中各取出1個球,球的標(biāo)號分別記做a,b,每個球被取出的可能性相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1則中獎,求中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別根據(jù)下列條件,求對應(yīng)雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點(diǎn)為,離心率;
(2)實(shí)軸長為4的等軸雙曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左頂點(diǎn)為.
(1)求橢圓的方程;
(2)已知為坐標(biāo)原點(diǎn), 是橢圓上的兩點(diǎn),連接的直線平行交軸于點(diǎn),證明: 成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,點(diǎn)在橢圓上, 為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn)為橢圓上的三點(diǎn),若四邊形為平行四邊形,證明:四邊形的面積為定值,并求該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與雙曲線有共同焦點(diǎn),且離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)為橢圓的下頂點(diǎn), 為橢圓上異于的不同兩點(diǎn),且直線與的斜率之積為.
(。┰噯所在直線是否過定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由;
(ⅱ)若為橢圓上異于的一點(diǎn),且,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)已知平面底面,且.在棱上是否存在點(diǎn),使?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了解消費(fèi)者對某款手機(jī)功能的認(rèn)同情況,通過銷售部隨機(jī)抽取50名購買該款手機(jī)的消費(fèi)者,并發(fā)出問卷調(diào)查(滿分50分),該問卷只有30份給予回復(fù),這30份的評分如下:
(Ⅰ)完成下面的莖葉圖,并求16名男消費(fèi)者評分的中位數(shù)與14名女消費(fèi)者評分的平均值;
(Ⅱ)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)者對該款手機(jī)的“滿意度”與性別有關(guān).
參考公式: ,其中
參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com