如圖,等腰梯形ABCD中,AB∥CD,且AB=2,AD=1,DC=2x(x∈(0,1)),以A,B為焦點(diǎn),且過點(diǎn)D的雙曲線的離心率為e1.以C,D為焦點(diǎn),且過點(diǎn)A的橢圓的離心率為e1,動點(diǎn)E在邊AB上,且|AE|<e1+e2,對x∈(0,1)恒成立,則|AE|的最大值為( 。
A、
3
B、2
C、
5
D、不存在
考點(diǎn):雙曲線的簡單性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)余弦定理表示出BD,進(jìn)而根據(jù)雙曲線的定義可得到a1的值,再由AB=2c1,e=
c
a
可表示出e1,同樣表示出橢圓中的c2和a2表示出e2的關(guān)系式,然后利用換元法求出e1+e2的取值范圍,再由恒成立思想即可得到所求最大值.
解答: 解:在等腰梯形ABCD中,BD2=AD2+AB2-2AD•AB•cos∠DAB
=1+4-2×1×2×(1-x)=1+4x,
由雙曲線的定義可得a1=
1+4x
-1
2
,c1=1,e1=
2
1+4x
-1
;
由橢圓的定義可得a2=
1+4x
+1
2
,c2=x,e2=
2x
1+4x
+1
,
則e1+e2=
2
1+4x
-1
+
2x
1+4x
+1
=
2
1+4x
-1
+
1+4x
-1
2

令t=
1+4x
-1∈(0,
5
-1),
則e1+e2=
1
2
(t+
4
t
)在(0,
5
-1)上遞減,
則e1+e2
1
2
×(
5
-1+
4
5
-1
)=
5

則有e1+e2的取值范圍為(
5
,+∞).
由于|AE|<e1+e2,對x∈(0,1)恒成立,
則有|AE|≤
5

即有|AE|的最大值為
5

故選C.
點(diǎn)評:本題主要考查橢圓的定義和簡單性質(zhì)、雙曲線的定義和簡單性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax,g(x)=-x2-1.
(Ⅰ)若函數(shù)y=f(x)的圖象始終在函數(shù)y=g(x)的圖象的上方,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象有兩條公切線,且由四個切點(diǎn)組成的四邊形的周長為6,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸出a的值大于2014,判斷框內(nèi)為k≤m,則整數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在△ABC中,角A,B,C所對邊分別為a,b,c,若a+c=1,∠B=30°,求b的取值范圍.
(2)在△ABC中,角A,B,C所對邊分別為a,b,c,若b=4,∠B=60°,求S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,
3
a
+
1
b
=2,求a+b-
a2+b2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
1
3
an+n,n為奇數(shù)
an-3n,n為偶數(shù)
,求證:數(shù)列{a2n-
3
2
}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=(2n-1)•3n,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

存在直線x=±m(xù)與雙曲線相交于A,B,C,D四點(diǎn),若四邊形ABCD是正方形,則雙曲線離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A(2,0)是圓x2+y2=4上的定點(diǎn),點(diǎn)B(1,1)是圓內(nèi)一點(diǎn),P,Q為圓上動點(diǎn),角PBQ=90°,求線段PQ中點(diǎn)軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案