A. | f(-1)<f(3)<f(4) | B. | f(4)<f(3)<f(-1) | C. | C.f(3)<f(4)<f(-1) | D. | f(-1)<f(4)<f(3) |
分析 根據(jù)奇函數(shù)的性質(zhì)和條件列出等式,由對(duì)稱性求出函數(shù)f(x)的對(duì)稱軸,并轉(zhuǎn)化f(4)和f(3),由奇函數(shù)與單調(diào)性的關(guān)系判斷出在[-2,2]上單調(diào)性,由單調(diào)性判斷出f(-1)、f(4)、f(3)大小關(guān)系.
解答 解:∵奇函數(shù)f(x)滿足f(x-4)=-f(x),
∴f(x)=-f(x+4),則f(x+4)=f(-x),
∴函數(shù)f(x)圖象關(guān)于直線x=2對(duì)稱,
∴f(4)=f(0),f(3)=f(1),
∵奇函數(shù)f(x)在區(qū)間[0,2]上時(shí)增函數(shù),
∴f(x)在區(qū)間[-2,2]上時(shí)增函數(shù),
∴f(-1)<f(0)<f(1),即f(-1)<f(4)<f(3),
故選D.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性,以及函數(shù)的對(duì)稱性的綜合應(yīng)用,考查轉(zhuǎn)化思想,化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{n(n-1)}{2}$ | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n(n-1)}{4}$ | D. | $\frac{n(n+1)}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=|x|,$g(x)=\sqrt{x^2}$ | B. | f(x)=2x,g(x)=2(x+1) | ||
C. | $f(x)=\sqrt{{{(-x)}^2}}$,$g(x)={(\sqrt{-x})^2}$ | D. | $f(x)=\frac{{{x^2}+x}}{x+1}$,g(x)=x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com