在平面直角坐標(biāo)系中,已知,,,,其中.設(shè)直線與的交點(diǎn)為,求動點(diǎn)的軌跡的參數(shù)方程(以為參數(shù))及普通方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的參數(shù)方程為是參數(shù),是曲線與軸正半軸的交點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)與曲線只有一個公共點(diǎn)的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄于表中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率,它的一個頂點(diǎn)恰好是拋物線的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線的交點(diǎn)為、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時,求曲線Cl與C2公共點(diǎn)的直角坐標(biāo);
(2)若,當(dāng)變化時,設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓,是長軸的左、右端點(diǎn),動點(diǎn)滿足,聯(lián)結(jié),交橢圓于點(diǎn).
(1)當(dāng),時,設(shè),求的值;
(2)若為常數(shù),探究滿足的條件?并說明理由;
(3)直接寫出為常數(shù)的一個不同于(2)結(jié)論類型的幾何條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦距為4,且過點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)為橢圓上一點(diǎn),過點(diǎn)作軸的垂線,垂足為。取點(diǎn),連接,過點(diǎn)作的垂線交軸于點(diǎn)。點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),作直線,問這樣作出的直線是否與橢圓C一定有唯一的公共點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線與軌跡交于兩點(diǎn).
(Ⅰ)寫出軌跡的方程;
(Ⅱ)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com