【題目】(導(dǎo)學(xué)號(hào):05856266)[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f+2m2<4m,求實(shí)數(shù)m的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)利用零點(diǎn)分區(qū)間討論去掉絕對(duì)值符號(hào),化為分段函數(shù),在每一個(gè)前提下去解不等式,每一步的解都要和前提條件找交集得出每一步的解,最后把每一步最后結(jié)果找并集得出不等式的解;
(2)根據(jù)第一步所化出的分段函數(shù)求出函數(shù)f(x)的最小值,若x0∈R,使得f(x0)+2m2<4m成立,只需4m﹣2m2>fmin(x),解出實(shí)數(shù)m的取值范圍.
試題解析:
(Ⅰ)當(dāng)x<-2時(shí),f(x)=-=1-2x+x+2=-x+3,
由f(x)>0,即-x+3>0,解得x<3.
又x<-2,所以x<-2;
當(dāng)-2≤x≤時(shí),f(x)=-=1-2x-x-2=-3x-1,
由f(x)>0,即-3x-1>0,解得x<-.又-2≤x≤,所以-2≤x<-;
當(dāng)x>時(shí),f(x)=-=2x-1-x-2=x-3,由f(x)>0,即x-3>0,解得x>3.
又x>,所以x>3.
綜上,不等式f(x)>0的解集為.
(Ⅱ)f(x)=-
=
所以f(x)min=f=-.
因?yàn)?/span>x0∈R,使得f+2m2<4m,
所以4m-2m2>f(x)min=-,整理得4m2-8m-5<0,解得-<m<.
因此,實(shí)數(shù)m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,焦距為2c,且c, ,2成等比數(shù)列.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)B坐標(biāo)為(0, ),問是否存在過點(diǎn)B的直線l交橢圓C于M,N兩點(diǎn),且滿足 (O為坐標(biāo)原點(diǎn))?若存在,求出此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中的假命題是( )
A. α,β∈R,使sin(α+β)=sinα+sinβ
B. φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
C. x0∈R,使 (a,b,c∈R且為常數(shù))
D. a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面積為,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1∶3,且成績(jī)分布在[40,100],分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng).按文、理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.
(1)求a的值,并計(jì)算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 5 | ||
不獲獎(jiǎng) | |||
合計(jì) | 200 |
附表及公式:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時(shí)租賃模式,某共享單車企業(yè)為更好服務(wù)社會(huì),隨機(jī)調(diào)查了100人,統(tǒng)計(jì)了這100人每日平均騎行共享單車的時(shí)間(單位:分鐘),由統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時(shí)間在三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時(shí)間不少于80分鐘的用戶定義為“忠實(shí)用戶”,將日平均騎行時(shí)間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實(shí)用戶”與“潛力用戶”的人中按分層抽樣選出5人,再?gòu)倪@5人中任取3人,求恰好1人為“忠實(shí)用戶”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856310)
已知函數(shù)f(x)=x++ln x(a∈R).
(Ⅰ)當(dāng)a=2時(shí), 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的函數(shù)g(x)=-f(x)+ln x+2e(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com