直線a、b為兩異面直線,下列結(jié)論正確的是(  )
A.過(guò)不在a、b上的任何一點(diǎn),可作一個(gè)平面與a、b都平行
B.過(guò)不在a、b上的任一點(diǎn),可作一直線與a、b都相交
C.過(guò)不在a、b上任一點(diǎn),可作一直線與a、b都平行
D.過(guò)a可以并且只可以作一個(gè)平面與b平行
A中:若此點(diǎn)與直線a確定一平面β恰好與直線b平行,此時(shí)直線a在已知平面上,并非與已知平面平行,故A錯(cuò)誤;
B中:由①可得,當(dāng)此點(diǎn)在β平面上時(shí),結(jié)論B不成立;
C中:若存在這樣的直線l,則la,lb,有平行公理知,必有ab,與已知矛盾,故C錯(cuò)誤;
D中:在直線a上取A、B點(diǎn),過(guò)A、B分別作直線c、d與直線b平行,c、d可確定平面α,即b平行于α,此時(shí)a在α平面上,故D正確;
故答案為 D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

11、下列命題中正確命題的個(gè)數(shù)是( 。
①經(jīng)過(guò)空間一點(diǎn)一定可作一平面與兩異面直線都平行;
②已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
③有兩個(gè)側(cè)面垂直于底面的四棱柱為直四棱柱;
④四個(gè)側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐P-ABC是正三棱錐.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①經(jīng)過(guò)空間一點(diǎn)一定可作一條直線與兩異面直線都垂直;
②經(jīng)過(guò)空間一點(diǎn)一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個(gè)側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題
(1)有2個(gè)面是矩形的平行六面體是直四棱柱
(2)一個(gè)直角三角形以直角邊為軸得到的旋轉(zhuǎn)體必定是圓錐
(3)若一條直線平行于平面內(nèi)的一條直線,則此直線必平行于該平面
(4)存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α
其中正確的序號(hào)是:
(2)(4)
(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:①在空間中,若OA∥O'A',OB∥O'B',則∠AOB=∠A'O'B';
②直角梯形是平面圖形;
③{長(zhǎng)方體}⊆{正四棱柱}⊆{直平行六面體}; 
④若a、b是兩條異面直線,a?平面α,a∥平面β,b∥平面α,則α∥β;
⑤在四面體P-ABC中,PA⊥BC,PB⊥AC,則點(diǎn)A在面PBC內(nèi)的射影為△PBC的垂心,其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西師大附中2010屆高三第三次模擬考試數(shù)學(xué)(理) 題型:選擇題

下列命題中正確命題的個(gè)數(shù)是                                                                                 ( 。

       ①經(jīng)過(guò)空間一點(diǎn)一定可作一平面與兩異面直線都平行;

       ②已知平面、,直線a、b,若,,則;

       ③有兩個(gè)側(cè)面垂直于底面的四棱柱為直四棱柱;

       ④四個(gè)側(cè)面兩兩全等的四棱柱為直四棱柱;

       ⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;

       ⑥底面是等邊三角形,∠APB=∠BPC=∠CPA,則三棱錐PABC是正三棱錐.

       A.0      B.1       C.2       D.3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案