精英家教網 > 高中數學 > 題目詳情
設拋物線的焦點為,準線為,,以為圓心的圓相切于點,的縱坐標為,是圓軸除外的另一個交點.
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點,求的面積.
(I)拋物線為:,圓的方程為:;( II).

試題分析:(I)根據拋物線的方程與準線,可得,由的縱坐標為,的縱坐標為,即 ,則,由題意可知:,則在等腰三角形中有,由于不重合,則.則拋物線與圓的方程就得出.
(II)對于圓錐曲線中求面積題目,第一求出弦長,第二求出點到直線距離即可,根據題意可寫出直線方程,聯(lián)立,則,由點到直線距離得.
試題解析:(I)根據拋物線的定義:有的縱坐標為,的縱坐標為
 ,,則,又由,
則拋物線為:,圓的方程為:
(II) 根據題意可寫出直線方程,聯(lián)立,則,
由點到直線距離得.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系上取兩個定點,再取兩個動點
(I)求直線交點的軌跡的方程;
(II)已知,設直線:與(I)中的軌跡交于兩點,直線、 的傾斜角分別為,求證:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,點為動點,、分別為橢圓的左、右焦點.已知為等腰三角形.

(1)求橢圓的離心率;
(2)設直線與橢圓相交于、兩點,是直線上的點,滿足,求點的軌跡
方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別是,離心率為橢圓上任一點,且的最大面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設斜率為的直線交橢圓兩點,且以為直徑的圓恒過原點,若實數滿足條件,求的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知焦點在軸上的橢圓和雙曲線的離心率互為倒數,它們在第一象限交點的坐標為,設直線(其中為整數).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線的焦點為,準線為,經過且斜率為的直線與拋物線在軸上方的部分相交于點,,垂足為,則的面積是    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為兩個不相等的非零實數,則方程所表示的曲線可能是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線的焦點F作一直線l交拋物線于A、B兩點,以AB為直徑的圓與該拋物線的準線l的位置關系為(     )
A. 相交 B. 相離 C. 相切 D. 不能確定

查看答案和解析>>

同步練習冊答案