解:(I)由f′(x)=e(x+1)=0,得x=-1;
當(dāng)變化時(shí)的變化情況如下表:可知f(x)的單調(diào)遞減區(qū)間為(-∞,-1),遞增區(qū)間為(-1,+∞),
f(x)有極小值為f(-1)=-
,但沒(méi)有極大值.
(II)令g(x)=[f(x)-f(a)]/(x-a)=(xe
x-ae
a)/(x-a),x>a,
則[f(x
2)-f(a)]/(x
2-a)>[f(x
1)-f(a)]/(x
1-a)恒成立,
即g(x)在(a,+∞)內(nèi)單調(diào)遞增這只需g′(x)>0.而g′(x)=[e
x(x
2-ax-a)+ae
a]/(x-a)
2記h(x)=e
x(x
2-ax-a)+ae
a,
則h′(x)=e
x[x
2+(2-a)x-2a]=e
x(x+2)(x-a)
故當(dāng)a≥-2,且x>a時(shí),h′(x)>0,h(x)在[a,+∞)上單調(diào)遞增.
故h(x)>h(a)=0,從而g′(x)>0,不等式(*)恒成立
另一方面,當(dāng)a<-2,且a<x<-2時(shí),h′(x)<0,h(x)在[a,-2]上單調(diào)遞減又h(a)=0,所以h(x)<0,
即g′(x)<0,g′(x)在(a,-2)上單調(diào)遞減.
從而存在x
1x
2,a<x
1<x
2<-2,使得g(x
2)<g(x
1)
∴a存在,其取值范圍為[-2,+∞)
分析:(I)利用函數(shù)的求導(dǎo)公式求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求函數(shù)的單調(diào)性和極值.
(II)構(gòu)造函數(shù)g(x)=[f(x)-f(a)]/(x-a)=(xe
x-ae
a)/(x-a),x>a,求出函數(shù)導(dǎo)數(shù),判斷函數(shù)導(dǎo)函數(shù)的值與0的關(guān)系,根據(jù)導(dǎo)函數(shù)的單調(diào)性,求a的取值范圍.
點(diǎn)評(píng):該題考查函數(shù)的求導(dǎo),以及在解答過(guò)程中構(gòu)造函數(shù),注意第二問(wèn)中自變量x的取值范圍.