已知函數(shù)f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=若P是曲線y=F(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線y=F(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.
解 (1)由g(x)≥-x2+(a+2)x,得(x-ln x)a≤x2-2x.
由于x∈[1,e],ln x≤1≤x,且等號不能同時取得,所以ln x<x,x-ln x>0.
從而a≤恒成立,a≤min.(4分)
設(shè)t(x)=,x∈[1,e].求導(dǎo),得t′(x)=.(6分)
x∈[1,e],x-1≥0,ln x≤1,x+2-2ln x>0,從而t′(x)≥0,t(x)在[1,e]上為增函數(shù).
所以t(x)min=t(1)=-1,所以a的取值范圍是(-∞,-1].(8分)
(2)F(x)=
設(shè)P(t,F(t))為曲線y=F(x)上的任意一點(diǎn).
假設(shè)曲線y=F(x)上存在一點(diǎn)Q(-t,F(-t)),使∠POQ為鈍角,
則<0.(10分)
①若t≤-1,P(t,-t3+t2),Q(-t,aln(-t)),=-t2+aln(-t)·(-t3+t2).
由于<0恒成立,a(1-t)ln(-t)<1.
當(dāng)t=-1時,a(1-t)ln(-t)<1恒成立.
當(dāng)t<-1時,a<恒成立.由于>0,所以a≤0.(12分)
②若-1<t<1,且t≠0,P(t,-t3+t2),Q(-t,t3+t2),則·=-t2+(-t3+t2)·(t3+t2)<0,
即t4-t2+1>0對-1<t<1,且t≠0恒成立.(14分)
③當(dāng)t≥1時,同①可得a≤0.
綜上所述,a的取值范圍是(-∞,0].(16分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
八個一樣的小球按順序排成一排,涂上紅、白兩種顏色,5個涂紅色,三個涂白色,恰好有三個連續(xù)的小球涂紅色,則涂法共有
A.24種 B.30種 C.20種 D.36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=aln x=(a為常數(shù)).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y-5=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)x≥1時,f(x)≤2x-3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列{bn}滿足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2+n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在實(shí)數(shù)p,q,對任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,試求q-p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若,求證:動點(diǎn)Q(m,n)在定圓上運(yùn)動,并求出定圓的方程;
(2)若M、N是橢圓C上兩上動點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
下列有關(guān)命題的說法正確的是( )
A.命題“若x2 =4,則x=2”的否命題為:“若x2 =4,則x≠2”
B.“x=2”是“x2—6x+8=0”的必要不充分條件
C.命題“若x=y,則cosx=cosy”的逆否命題為真命題
D.命題“存在x∈R,使得x2+x+3>0”的否定是:“對于任意的x∈R,均有
x2 +x+3<0"
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)復(fù)數(shù),i為虛數(shù)單位,則復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線的方程為,直線的方程為,點(diǎn)A關(guān)于直線的對稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,點(diǎn)是拋物線的焦點(diǎn),M是拋物線上的動點(diǎn),求的最小值及此時點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)B、C是拋物線上的動點(diǎn),點(diǎn)D是拋物線與軸正半軸交點(diǎn),△BCD是以D為直角頂點(diǎn)的直角三角形.試探究直線BC是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com