(本小題滿分12分)
如圖,用半徑為R的圓鐵皮,剪一個圓心角為的扇形,制成一個圓錐形的漏斗,問圓心角取什么值時,漏斗容積最大.(圓錐體積公式:,其中圓錐的底面半徑為r,高為h)

解析試題分析:設(shè)圓錐的底面半徑為r,高為h,體積為V,那么
,
因此,
=.………………………………(3分)
.
,即,得.…………………………………………(5分)
時,.
時,.
所以,時,V取得極大值,并且這個極大值是最大值.……………………(8分)
代入,得.
,得
答:圓心角弧度時,漏斗容積最大.………………………………………(12分)
考點:函數(shù)導數(shù)求最值
點評:本題是函數(shù)應(yīng)用題,首先找到容積與高或底面圓的半徑間的函數(shù)關(guān)系式,進而通過導數(shù)工具求其最值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知,
設(shè).
(Ⅰ)求的表達式;
(Ⅱ)若函數(shù)和函數(shù)的圖象關(guān)于原點對稱,
(。┣蠛瘮(shù)的解析式;
(ⅱ)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)求函數(shù)的最小正周期和最小值;
并寫出該函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的圖象過點.
(Ⅰ)求的值;
(Ⅱ)在△中,角,,的對邊分別是,,.若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知f (x)=sinx+cosx (xÎR).
(Ⅰ)求函數(shù)f (x)的周期和最大值; 
(Ⅱ)若f (A+)=,求cos2A的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(Ⅰ)求的值;
(Ⅱ)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)已知內(nèi)角A,B,C的對邊分別為,若向量共線,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(1)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(2)當時,函數(shù)的最大值與最小值的和為,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),
(1)求的最大值;
(2)設(shè)△中,角的對邊分別為、,若,
求角的大。

查看答案和解析>>

同步練習冊答案