已知橢圓P的中心O在坐標原點,焦點在
軸上,且經(jīng)過點A(0,
),離心率為
。
(1)求橢圓P的方程;
(2)是否存在過點E(0,-4)的直線
交橢圓P于兩不同點
,
,且滿足
,若存在,求直線
的方程;若不存在,請說明理由。
解:(1)設(shè)橢圓P的方程為
,
由題意得
,
,
∴
,
,
∴橢圓P的方程為
。
(2)假設(shè)存在滿足題意的直線
,易知當直線
的斜率不存在時,
不滿足題意。
故可設(shè)直線
的方程為
,R(
),T(
)。
∵
∴
=
。
由
得
,
由
得,
,解得
。①
∴
,
,
∴
=
,
故
=
+
,解得
,②
由①②解得
,
∴直線
的方程為
。
故存在直線
或
滿足題意。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)
設(shè)橢圓
右焦點為
,它與直線
相交于
、
兩點,
與
軸的交點
到橢圓左準線的距離為
,若橢圓的焦距
是
與
的等差中項.
⑴求橢圓離心率
;
⑵設(shè)點
與點
關(guān)于原點
對稱,若以
為圓心,
為半徑的圓與
相切,且
求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓
C:
,經(jīng)過橢圓
的右焦點F且斜率為
的直線
l交橢圓
C于A、B兩點,M為線段AB的中點,設(shè)O為橢圓的中心,射線OM交橢圓于N點.
(I)是否存在
,使對任意
,總有
成立?若存在,求出所有
的值;
(II)若
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)已知橢圓
C的中心在坐標原點,焦點在
x軸上,離心率
.直線
:
與橢圓
C相交于
兩點, 且
.
(1)求橢圓
C的方程;
(2)點
P(
,0),A、B為橢圓
C上的動點,當
時,求證:直線
AB恒過一個定點.并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)
F是橢圓
C:
的左焦點,直線
l為其左準線,直線
l與
x軸交于點
P,線段
MN為橢圓的長軸,已知
.
(1) 求橢圓
C的標準方程;
(2) 若過點
P的直線與橢圓相交于不同兩點
A、B求證:∠
AFM =∠
BFN;
(3) 求三角形
ABF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.
已知
的頂點
在橢圓
上,
在直線
上,
且
.
(1)求邊
中點的軌跡方程;
(2)當
邊通過坐標原點
時,求
的面積;
(3)當
,且斜邊
的長最大時,求
所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
左焦點是
,右焦點是
,右準線是
,
是
上一點,
與橢圓交于點
,滿足
,則
等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
m(
x+y+2y+1)
=(
x-2
y+3)
表示的曲線為一個橢圓,則
m的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,在等腰梯形ABCD中,AB//CD,且AB=2AD,設(shè)
,以A,B為焦點且過點D的雙曲線的離心率為
,以C,D為焦點且過點A的橢圓的離心率為
,則 ( )
A.隨著角度
的增大,
增大,
為定值
B.隨著角度
的增大,
減小,
為定值
C.隨著角度
的增大,
增大,
也增大
C.隨著角度
的增大,
減小,
也減小
查看答案和解析>>