【題目】如圖,矩形ABCD中,,EF分別為AD,AB中點(diǎn),M為線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),現(xiàn)將,,分別沿EC,EF折起,使A,D重合于點(diǎn)P.設(shè)PM與平面BCEF所成角為,二面角的平面角為,二面角的平面角為,則(

A.B.C.D.

【答案】D

【解析】

過(guò)平面,作出三個(gè)二面角,二面角的平面角,二面角的平面角,通過(guò)原平面圖形計(jì)算可得這三個(gè)角的大小關(guān)系.從而得出結(jié)論.

翻折過(guò)程中,A點(diǎn)在底面的投影在過(guò)點(diǎn)A且垂直EF的直線(xiàn)上(設(shè)垂足為I),同理在翻折過(guò)程中,D點(diǎn)在底面的投影在過(guò)點(diǎn)D且垂直EC的直線(xiàn)上(設(shè)垂足為K),設(shè)點(diǎn)P在底面的投影為點(diǎn)H,過(guò)點(diǎn)HBC作垂線(xiàn)HJ(垂足為J),

攤平到原來(lái)的平面圖形,如下右圖,就是延長(zhǎng)線(xiàn)的交點(diǎn),由已知可得,,,則,,同理可得,,則在左圖中知易得,由二面角的定義知,所以,

又在右圖中,以,軸建立平面直角坐標(biāo)系,,則,直線(xiàn)方程為,同理直線(xiàn)的方程為,由,即,∴,∴,所以二面角的平面角小于二面角的平面角,顯然不大于二面角的平面角,∴,綜上可知,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20201月,某公司以問(wèn)卷的形式調(diào)查影響員工積極性的六項(xiàng)關(guān)鍵指標(biāo):績(jī)效獎(jiǎng)勵(lì)、排班制度、激勵(lì)措施、工作環(huán)境、人際關(guān)系、晉升渠道,在確定各項(xiàng)指標(biāo)權(quán)重結(jié)果后,進(jìn)而得到指標(biāo)重要性分析象限圖(如圖).若客戶(hù)服務(wù)中心從中任意抽取不同的兩項(xiàng)進(jìn)行分析,則這兩項(xiàng)來(lái)自影響稍弱區(qū)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的參數(shù)方程為為參數(shù)).

1)求曲線(xiàn)的參數(shù)方程與直線(xiàn)的普通方程;

2)設(shè)點(diǎn)過(guò)為曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)和點(diǎn)為直線(xiàn)上的點(diǎn),且滿(mǎn)足為等邊三角形,求邊長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=Asinωx)(A0,ω0,0φπ)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,又,且銳角C滿(mǎn)足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬(wàn),試估計(jì)全市有多少居民?并說(shuō)明理由;

(Ⅱ)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為之間選取7戶(hù)居民作為議價(jià)水費(fèi)價(jià)格聽(tīng)證會(huì)的代表,并決定會(huì)后從這7戶(hù)家庭中按抽簽方式選出4戶(hù)頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)為用水量噸數(shù)在中的獲獎(jiǎng)的家庭數(shù),為用水量噸數(shù)在中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCDA1B1C1D1中,AA12AB2AD4,過(guò)AA1作平面α使BDα,且平面α平面A1B1C1D1l,Ml.下面給出了四個(gè)命題:這四個(gè)命題中,真命題的個(gè)數(shù)為(

lAC;

BMAC;

lAD1所成的角為60°

④線(xiàn)段BM長(zhǎng)度的最小值為.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較甲,乙兩地某月時(shí)的氣溫,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的中位數(shù)小于乙地該月時(shí)的氣溫的中位數(shù);④甲地該月時(shí)的氣溫的中位數(shù)大于乙地該月時(shí)的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)某中學(xué)理學(xué)社為了吸收更多新社員,在校團(tuán)委的支持下,在高一學(xué)年組織了抽簽贈(zèng)書(shū)活動(dòng).月初報(bào)名,月末抽簽,最初有30名同學(xué)參加.社團(tuán)活動(dòng)積極分子甲同學(xué)參加了活動(dòng).

①第一個(gè)月有18個(gè)中簽名額.甲先抽簽,乙和丙緊隨其后抽簽.求這三名同學(xué)同時(shí)中簽的概率.

②理學(xué)社設(shè)置了第()個(gè)月中簽的名額為,并且抽中的同學(xué)退出活動(dòng),同時(shí)補(bǔ)充新同學(xué),補(bǔ)充的同學(xué)比中簽的同學(xué)少2個(gè),如果某次抽簽的同學(xué)全部中簽,則活動(dòng)立刻結(jié)束.求甲同學(xué)參加活動(dòng)時(shí)間的期望.

2)某出版集團(tuán)為了擴(kuò)大影響,在全國(guó)組織了抽簽贈(zèng)書(shū)活動(dòng).報(bào)名和抽簽時(shí)間與(1)中某中學(xué)理學(xué)社的報(bào)名和抽簽時(shí)間相同,最初有30萬(wàn)人參加,甲同學(xué)在其中.每個(gè)月抽中的人退出活動(dòng),同時(shí)補(bǔ)充新人,補(bǔ)充的人數(shù)與中簽的人數(shù)相同.出版集團(tuán)設(shè)置了第()個(gè)月中簽的概率為,活動(dòng)進(jìn)行了個(gè)月,甲同學(xué)很幸運(yùn),中簽了,在此條件下,求證:甲同學(xué)參加活動(dòng)時(shí)間的均值小于個(gè)月.

查看答案和解析>>

同步練習(xí)冊(cè)答案