【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了停課不停學(xué)活動,此活動為學(xué)生提供了多種網(wǎng)絡(luò)課程資源以供選擇使用.活動開展一個月后,某學(xué)校隨機抽取了高三年級的甲、乙兩個班級進行網(wǎng)絡(luò)問卷調(diào)查,統(tǒng)計學(xué)生每天的學(xué)習(xí)時間,將樣本數(shù)據(jù)分成五組,并整理得到如下頻率分布直方圖:

1)已知該校高三年級共有600名學(xué)生,根據(jù)甲班的統(tǒng)計數(shù)據(jù),估計該校高三年級每天學(xué)習(xí)時間達到5小時及以上的學(xué)生人數(shù);

2)已知這兩個班級各有40名學(xué)生,從甲、乙兩個班級每天學(xué)習(xí)時間不足4小時的學(xué)生中隨機抽取3人,記從甲班抽到的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;

3)記甲、乙兩個班級學(xué)生每天學(xué)習(xí)時間的方差分別為,試比較的大小.(只需寫出結(jié)論)

【答案】1;(2)分布列見解析,數(shù)學(xué)期望為1;(3

【解析】

1)根據(jù)甲班的統(tǒng)計數(shù)據(jù),可求出每天學(xué)習(xí)時間達到5小時及以上的學(xué)生的頻率之和,進而乘以600,可求出答案;

2)計算可得甲、乙兩班每天學(xué)習(xí)時間不足4小時的學(xué)生人數(shù)分別為,,從而可知可取的值為,然后求出三種情形下的概率,進而可列出分布列,求出數(shù)學(xué)期望;

3)由甲班學(xué)生每天學(xué)習(xí)時間更集中,可知.

1)根據(jù)甲班的統(tǒng)計數(shù)據(jù),該校高三年級每天學(xué)習(xí)時間達到5小時及以上的學(xué)生人數(shù)約為;

2)甲班每天學(xué)習(xí)時間不足4小時的學(xué)生人數(shù)為,

乙班每天學(xué)習(xí)時間不足4小時的學(xué)生人數(shù)為,

從甲班抽到的學(xué)生人數(shù)可取的值為

,,,

所以的分布列為:

0

1

2

的數(shù)學(xué)期望為:.

3)結(jié)合頻率分布直方圖,可知甲班學(xué)生每天學(xué)習(xí)時間更集中,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,點的極坐標,直線經(jīng)過點,且傾斜角為.

1)寫出曲線的直角坐標方程和直線的標準參數(shù)方程;

2)直線與曲線交于兩點,直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為正方形,為正三角形,的中點,過的平面平行于平面,且平面與平面的交線為,與平面的交線為

1)在圖中作出四邊形(不必說出作法和理由);

2)若,四棱錐的體積為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的值為( )

A.80B.192C.448D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國電子商務(wù)行業(yè)迎來了蓬勃發(fā)展的新機遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對本地的電商行業(yè)進行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬元),得到如下莖葉圖:

7

5

10

7

9

5

3

11

5

7

8

8

6

12

3

5

4

2

13

2

6

9

1

14

8

1)根據(jù)莖葉圖判斷甲、乙兩家電商對這種產(chǎn)品的銷售誰更穩(wěn)定些?

2)為了綜合評估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬元的天數(shù)分別記為,令,求隨機變量Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求的單調(diào)區(qū)間;

)若都屬于區(qū)間,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

1)求,并求的單調(diào)區(qū)間;

2)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,我國老年人口比例不斷上升,造成日趨嚴峻的人口老齡化問題.20191012日,北京市老齡辦、市老齡協(xié)會聯(lián)合北京師范大學(xué)中國公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為勞動年齡,具備勞動力,60歲及以上年齡為老年人,據(jù)統(tǒng)計,2018年底北京市每2.4名勞動力撫養(yǎng)1名老年人.

(Ⅰ)請根據(jù)上述圖表計算北京市2018年戶籍總?cè)丝跀?shù)和北京市2018年的勞動力數(shù);(保留兩位小數(shù))

(Ⅱ)從2014年起,北京市老齡人口與年份呈線性關(guān)系,比照2018年戶籍老年人人口年齡構(gòu)成,預(yù)計到2020年年底,北京市90以上老人達到多少人?(精確到1人)

(附:對于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘法估計分別為:.,

查看答案和解析>>

同步練習(xí)冊答案