已知復(fù)數(shù)Z=-1+i(i為虛數(shù)單位),則復(fù)數(shù)Z的共軛復(fù)數(shù)為( 。
A、1+iB、1-i
C、-1+iD、-1-i
考點:復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的共軛復(fù)數(shù)求解.
解答: 解:∵復(fù)數(shù)Z=-1+i(i為虛數(shù)單位),
∴復(fù)數(shù)Z的共軛復(fù)數(shù)
.
z
=-1-i.
故選:D.
點評:本題考查復(fù)數(shù)的共軛復(fù)數(shù)的求法,解題時要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β為銳角,且cosα=
5
13
,cos(α+β)=-
4
5
,則cosβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x+1|+|x+2|+|x+3|+…+|x+2012|+|x-1|+|x-2|+|x-3|+…+|x-2012|(x∈R),且f(a2-3a+2)=f(a-1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-2x)7的展開式的第4項的系數(shù)為(  )
A、280B、560
C、-280D、-560

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由一組數(shù)據(jù)(x1,y1)、(x2,y2)、…、(xn,yn)得到的線性回歸方程為y=a+bx,則下列說法正確的是( 。
A、直線y=a+bx必過點(
.
x
,
.
y
B、直線y=a+bx至少經(jīng)過點(x1,y1)、(x2,y2)、…、(xn,yn)中的一點
C、直線y=a+bx是由(x1,y1)、(x2,y2)、…、(xn,yn)中的兩點確定的
D、(x1,y1)、(x2,y2)、…、(xn,yn),這n個點到直線y=a+bx的距離之和最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的漸進(jìn)線為y=±
3
4
x,則此雙曲線的離心率是( 。
A、
5
4
B、
5
4
5
3
C、2
D、
5
2
15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx2+cx是定義在[a-1,2a]上的奇函數(shù),則a+b=(  )
A、-
1
3
B、
1
3
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是奇函數(shù),且在區(qū)間[-
π
2
,0]內(nèi)單調(diào)遞減,則f(x)可以是( 。
A、-sinxB、-cosx
C、sinxD、cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任意向量
a
=(a1,a2),
b
=(b1,b2),定義運(yùn)算?:
a
?
b
=(a2b2,a1b1),下列等式中(“+”和“•”是通常的向量加法和數(shù)量積,λ∈R),不恒成立的是(  )
A、
a
?
b
=
b
?
a
B、
a
?(
b
+
c
)=
a
?
b
+
a
?
c
C、(λ
a
)?
b
=λ(
b
?
a
D、
a
•(
b
?
c
)=(
a
?
b
)•
c

查看答案和解析>>

同步練習(xí)冊答案