【題目】若數列{an}滿足:,且a1=1,則稱{an}為一個X數列.對于一個X數列{an},若數列{bn}滿足:b1=1,且,,則稱{bn}為{an}的伴隨數列.
(Ⅰ)若X數列{an}中a2=1,a3=0,a4=1,寫出其伴隨數列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}為一個X數列,{bn}為{an}的伴隨數列,證明:“{an}為常數列”是“{bn}為等比數列”的充要條件.
【答案】(Ⅰ),,;(Ⅱ)見解析
【解析】
(Ⅰ)由已知與數列遞推式求b2,b3,b4的值即可;
(Ⅱ)充分性,由X數列{an}為常數列,推出即可;必要性,利用反證法證明即可.
(Ⅰ),,;
(Ⅱ)充分性:若X數列{an}為常數列,∵a1=1,∴,
∴,又∵b1=1≠0,∴其伴隨數列{bn}是以1為首項,以為公比的等比數列;
必要性:假設數列{bn}為等比數列,而數列{an}不為常數列,∴數列{an}中存在等于0的項,設第一個等于0的項為ak,其中k>1,k∈N*,
∴,得等比數列{bn}的公比.
又,得等比數列{bn}的公比,與q=1矛盾.∴假設不成立.
∴當數列{bn}為等比數列時,數列{an}為常數列.
綜上“{an}為常數列”是“{bn}為等比數列”的充要條件.
科目:高中數學 來源: 題型:
【題目】已知函數.
(I)若,判斷上的單調性;
(Ⅱ)求函數上的最小值;
(III)當時,是否存在正整數n,使恒成立?若存在,求出n的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點,且短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作軸的垂線,設點為第四象限內一點且在橢圓上(點不在直線上),點關于的對稱點為,直線與橢圓交于另一點.設為坐標原點,判斷直線與直線的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點到點的距離與點到直線的距離的比值為.
(1)求動點的軌跡的方程;
(2)設為軌跡與軸正半軸的交點,上是否存在兩點,使得是以為直角頂點的等腰直角三角形?若存在,請說明滿足條件的的個數;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】蘋果是人們日常生活中常見的營養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產地的富士蘋果,各產地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:
產地 | |||||
批發(fā)價格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產品的銷售量在市場同類產品中所占比重.
(1)從該地批發(fā)市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;
(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,
①從產地共抽取箱,求的值;
②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產地不同的概率;
(3)由于受種植規(guī)模和蘋果品質的影響,預計明年產地的市場份額將增加,產地的市場份額將減少,其它產地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據《人民網》報道,“美國國家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了.衛(wèi)星資料顯示中國和印度的行動主導了地球變綠.”據統(tǒng)計,中國新增綠化面積的42%來自于植樹造林,下表是中國十個地區(qū)在2017年植樹造林的相關數據.(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)
單位:公頃
造林方式 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復 | 人工更新 |
內蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重慶 | 226333 | 100600 | 62400 | 63333 | ||
陜西 | 297642 | 33602 | 63865 | 16067 | ||
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(I)請根據上述數據分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(Ⅱ)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)人工造林面積占造林總面積的比值超過的概率是多少?
(Ⅲ)在這十個地區(qū)中,從新封山育林面積超過五萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復面積超過六萬公頃的地區(qū)的個數,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數,表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數據如表1所示:表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據以上數據,繪制了如圖所示的散點圖.
(1)根據散點圖判斷,在推廣期內,與均為大于零的常數)哪一個適宜作為掃碼支付的人次關于活動推出天數的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(1)的判斷結果及表l中的數據,求關于的回歸方程,并預測活動推出第8天使用掃碼支付的人次;
(3)推廣期結束后,車隊對乘客的支付方式進行統(tǒng)計,結果如表2
表2:
支付方式 | 現金 | 乘車卡 | 掃碼 |
比例 |
已知該線路公交車票價為2元,使用現金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據統(tǒng)計結果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據所給數據以事件發(fā)生的頻率作為相應事件發(fā)生的概率,估計一名乘客一次乘車的平均費用.
參考數據:
66 | 1.54 | 2.711 | 50.12 | 3.47 |
其中,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com