精英家教網 > 高中數學 > 題目詳情
9、命題“?x∈R,x2+x-2≤0”的否定是
?x∈R,x2+x-2>0
分析:根據命題“?x∈R,x2+x-2≤0”是特稱命題,其否定為全稱命題,即:??x∈R,x2+x-2>0..從而得到答案.
解答:解:∵命題“?x∈R,x2+x-2≤0”是特稱命題
∴否定命題為:?x∈R,x2+x-2>0
故答案為:?x∈R,x2+x-2>0.
點評:本題主要考查全稱命題與特稱命題的轉化.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列有關命題的說法正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

命題“?x∈R,x2+x>0”的否定是“
?x∈R,x2+x≤0
?x∈R,x2+x≤0

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:其中真命題的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•天津模擬)給定下列四個命題:
①“x=
π
6
”是“sinx=
1
2
”的充分不必要條件;    
②若“p∨q”為真,則“p∧q”為真;
③命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④線性相關系數r的絕對值越接近于1,表明兩個隨機變量線性相關性越強;
其中為真命題的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

命題“?x∈R,x2+ax-4a<0”的否定是
 

查看答案和解析>>

同步練習冊答案