8.設(shè)a>0,函數(shù)f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若對任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,則實數(shù)a的取值范圍是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

分析 對任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立?f(x1min≥g(x2min,先對函數(shù)g(x)求導(dǎo)判斷出函數(shù)g(x)的單調(diào)性并求其最小值,然后對函數(shù)f(x)進(jìn)行求導(dǎo)判斷單調(diào)性求其最小值,即可.

解答 解:∵g(x)=x-lnx
∴g'(x)=1-$\frac{1}{x}$,x∈[$\frac{1}{e}$,1],g'(x)≤0,函數(shù)g(x)單調(diào)遞減,g(x)的最小值為g(1)=1,
f'(x)=$\frac{{x}^{2}-{a}^{2}}{{x}^{2}}$,令f'(x)=0∵a>0∴x=a
當(dāng)a≥1時,f(x)在[$\frac{1}{e}$,1],上單調(diào)減,f(x)最小=f(1)=1+a2≥1恒成立,符合題意;
當(dāng)$\frac{1}{e}<a<1$時,在[$\frac{1}{e}$,a]上單調(diào)減,在[a,1],上單調(diào)增,f(x)最小=f(a)=2a≥1,⇒$\frac{1}{2}≤a<1$;
當(dāng)a$≤\frac{1}{e}$時,在[$\frac{1}{e}$,1]上單調(diào)增,f(x)最小=f($\frac{1}{e}$)=$\frac{1}{e}+{a}^{2}e≥1$,⇒$\frac{\sqrt{{e}^{2}-1}}{e}≤a≤\frac{1}{e}$
綜上:則實數(shù)a的取值范圍是:[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].
故答案為:[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

點(diǎn)評 本題主要考查了關(guān)任意性和存在性問題的轉(zhuǎn)化策略,將任意性與存在性問題轉(zhuǎn)化為函數(shù)值域關(guān)系或最值關(guān)系,并得到雙變量的存在性和任意性問題的辨析方法,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)為偶函數(shù),且f(x+2)=-f(x),當(dāng)x∈(0,1)時,f(x)=($\frac{1}{2}$)x,則f($\frac{7}{2}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在R上的偶函數(shù),且f(x)在[0,+∞)是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.$(\frac{1}{10},10)$B.(0,10)C.(10,+∞)D.$(0,\frac{1}{10})∪(10,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,若F關(guān)于直線$\sqrt{3}$x+y=0的對稱點(diǎn)A是橢圓C上的點(diǎn),則橢圓C的離心率為(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.$\sqrt{5}$-2D.$\sqrt{6}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某學(xué)校對高二年級期中考試數(shù)學(xué)成績進(jìn)行分析,隨機(jī)抽取了分?jǐn)?shù)在[100,150]的1000名學(xué)生的成績,并根據(jù)這1000名學(xué)生的成績畫出頻率分布直方圖(如圖所示),則成績在[120,130)內(nèi)的學(xué)生共有300人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={x|1+x≥0},N={x|$\frac{4}{1-x}$>0},則M∩N=(  )
A.{x|-1≤x<1}B.{x|x>1}C.{x|-1<x<1}D.{x|x≥-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f′(x)為函數(shù)f(x)=$\frac{1}{3}a{x^3}+(3-a){x^2}$-7x+5(a>0)的導(dǎo)函數(shù),當(dāng)x∈[-2,2]時,|f′(x)|≤7恒成立,則f(x)=x3-7x+5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=(log${\;}_{\frac{1}{4}}$x)2-log${\;}_{\frac{1}{2}}$$\sqrt{x}$+5在區(qū)間[2,4]上的最小值是$\frac{13}{2}$,此時x的值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且f(-x)=-f(x),當(dāng)x∈(0,1)時,f(x)=$\frac{2^x}{{{4^x}+1}}$,
(1)求f(x)在[-1,1]上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明;
(3)當(dāng)k取何值時,方程f(x)=k在[-1,1]上有解.

查看答案和解析>>

同步練習(xí)冊答案