函數(shù)y=f (x)是R上的增函數(shù),則a+b>0是f (a)+f (b)>f (-a)+f (-b)的______條件.
證明:(充分性)∵函數(shù)y=f (x)是R上的增函數(shù)
∴當(dāng)a+b>0時(shí),a>-b,b>-a
∴f(a)>f(-b),f(b)>f(-a)
∴f(a)+f(b)>f(-a)+f(-b)
∴充分條件成立
(必然性)反證法證明:
假設(shè)a+b≤0
則a≤-b,b≤-a
又∵函數(shù)y=f (x)是R上的增函數(shù)
∴f(a)≤f(-b),f(b)≤f(-a)
∴f(a)+f(b)≤f(-a)+f(-b)
與條件矛盾
∴假設(shè)并不成立
∴a>b
∴必要條件成立
∴a+b>0是f (a)+f (b)>f (-a)+f (-b)的充要條件
故答案為:充要條件
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則稱m為離實(shí)數(shù)x最近的整數(shù),記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的五個(gè)命題:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)?span id="ucobovq" class="MathJye">[0,
1
2
];
②函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
③函數(shù)y=f(x)在[-
1
2
,
1
2
]
上是增函數(shù);
④函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對(duì)稱;
⑤函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)對(duì)稱.
其中正確的命題有( 。﹤(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是二次函數(shù),且f(0)=8,f(x+1)-f(x)=-2x+1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求證f(x)在區(qū)間[1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(2)=0,對(duì)任意x∈R,都有f(x+4)=f(x)+f(4)成立,則f(2008)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+
π
3
)
,給出下列命題:①f(x)的圖象可以看作是由y=sin2x的圖象向左平移
π
6
個(gè)單位而得;②f(x)的圖象可以看作是由y=sin(x+
π
6
)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)縮小為原來(lái)的
1
2
而得;③函數(shù)y=|f(x)|的最小正周期為
π
2
;④函數(shù)y=|f(x)|是偶函數(shù).其中正確的結(jié)論是:
①③
①③
.(寫出你認(rèn)為正確的所有結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)若函數(shù)y=f(x)是函數(shù)y=2x的反函數(shù),則f(2)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案