函數(shù)y=sinxcosx的最小值是________.


分析:由于y=sinxcosx=sin2x而x∈R故所以
解答:∵y=sinxcosx
∴y=sin2x
又∵x∈R



故答案為:
點(diǎn)評(píng):本題主要考查了已知三角函數(shù)求最值.當(dāng)遇到此類(lèi)問(wèn)題時(shí)需利用二倍角公式和輔助角公式將三角函數(shù)轉(zhuǎn)化為y=Asin(wx+∅)+k或y=Acos(Wx+∅)+k或y=tan(Wx+∅)+k的形式再結(jié)合定義域和正弦函數(shù),余弦函數(shù),正切函數(shù)的圖象求解!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinxcosx的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中:
①α=2kπ+
π
3
(k∈Z)是tanα=
3
的充分不必要條件
②函數(shù)y=sinxcosx的最小正周期是2π
③在△ABC中,若cosAcosB>sinAsinB,則△ABC為鈍角三角形
④函數(shù)y=2sin(2x+
π
6
)+1圖象的對(duì)稱(chēng)中心為(
2
-
π
12
,1)
(k∈Z).
其中正確的命題為
 
(請(qǐng)將正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中:
(1)α=2kπ+
π
3
(k∈Z)是tanα=
3
的充分不必要條件
(2)函數(shù)y=sinxcosx的最小正周期是2π
(3)在△ABC中,若cosAcosB>sinAsinB,則△ABC為鈍角三角形
(4)函數(shù)y=2sin(2x+
π
6
)+1圖象的對(duì)稱(chēng)中心為(
2
-
π
12
,1)(k∈R)
(5)女大學(xué)生的身高預(yù)報(bào)體重的回歸方程y′=0.849x-85.712,對(duì)于身高為172cm的女大學(xué)生可以得到其精確體重為60.316(kg).
其中正確的命題為
 
(請(qǐng)將正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinxcosx的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinxcosx的最小正周期是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案