集合M={x||x-3|<4},N={x|x2+x-2<0,x∈Z},則 M∩N( )
A.{0}
B.{2}
C.∅
D.{x|2≤x≤7}
【答案】分析:解絕對值不等式求出集合M,解二次不等式求出集合N,利用交集是定義求出M∩N即可.
解答:解:因為|x-3|<4,所以-1<x<7,所以M={x|-1<x<7};
因為x2+x-2<0,所以-2<x<1,所以N={x|x2+x-2<0,x∈Z}={-1,0};
則 M∩N={x|-1<x<7}∩{-1,0}={0}.
故選A.
點評:本題考查不等式的解法,求集合的交集的運算,注意集合中元素的限制條件,否則容易出錯,是高考常會考的題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

31、已知全集U=R,集合M={x||x-1|≤2},則CUM=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x||x-1|≤2,x∈R},P={x|
5
x+1
≥1,x∈Z}
,則M∩P等于( 。
A、{x|0<x≤3,x∈Z}
B、{x|0≤x≤3,x∈Z}
C、{x|-1≤x≤0,x∈Z}
D、{x|-1≤x<0,x∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x<1},N={x|x(x-2)<0},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x||x|<2},N={x|
x+1
x-3
<0}
,則集合M∩(CRN)等于( 。
A、{x|-2<x≤-1}
B、{x|x>3}
C、{x|-1<x<2}
D、{x|-2<x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x<3},N={x|2x>2},則M∩N=( 。

查看答案和解析>>

同步練習(xí)冊答案