【題目】對某市工薪階層關(guān)于“樓市限購政策”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽查了人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如下表:
月收入(百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1))根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并回答是否有的把握認(rèn)為月收入以百元為分界點(diǎn)對“樓市限購政策”的態(tài)度有差異?
月收入低于55百元人數(shù) | 月收入不低于55百元人數(shù) | 總計(jì) | |
贊成 | |||
不贊成 | |||
總計(jì) |
(2)若從月收入在的被調(diào)查對象中隨機(jī)選取人進(jìn)行調(diào)查,求至少有一人贊成“樓市限購政策”的概率.
(參考公式:,其中)
參考值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(1)有的把握認(rèn)為月收入以百元為分界點(diǎn)對“樓市限購政策”的態(tài)度有差異.
(2).
【解析】
(1)根據(jù)提供數(shù)據(jù),可填寫表格,利用公式,可計(jì)算的值,根據(jù)臨界值表,即可得到結(jié)論;
(2)由題意設(shè)此組五人A,B,a,b,c表示不贊同者,分別寫出從中選取兩人的所有情形及其中至少一人贊同的情形,利用概率的公式進(jìn)行求解即可得結(jié)果.
(1)由題意得列聯(lián)表:
月收入低于55百元人數(shù) | 月收入不低于55百元人數(shù) | 總計(jì) | |
贊成 | 32 | ||
不贊成 | 18 | ||
總計(jì) | 40 | 10 | 50 |
根據(jù)列聯(lián)表中的數(shù)據(jù)得的觀測值
,
所以有的把握認(rèn)為月收入以百元為分界點(diǎn)對“樓市限購政策”的態(tài)度有差異.
(2)設(shè)月收入在的人為,,,,,其中,表示贊成者,,,表示不贊成者.
從人中選取人的情況有:,,,,,,,,,,共種,
其中至少有一人贊成的有,,,,,,,共種,
故所求概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修44:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)
方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線,圓.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,設(shè)與的交點(diǎn)為、,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義域?yàn)?/span>的奇函數(shù),且當(dāng)時(shí), ,設(shè) “”.
(1)若為真,求實(shí)數(shù)的取值范圍;
(2)設(shè)集合與集合的交集為,若為假, 為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某行業(yè)主管部門為了解本行業(yè)中小企業(yè)的生產(chǎn)情況,隨機(jī)調(diào)查了100個(gè)企業(yè),得到這些企業(yè)第一季度相對于前一年第一季度產(chǎn)值增長率y的頻數(shù)分布表.
的分組 | |||||
企業(yè)數(shù) | 2 | 24 | 53 | 14 | 7 |
(1)分別估計(jì)這類企業(yè)中產(chǎn)值增長率不低于40%的企業(yè)比例、產(chǎn)值負(fù)增長的企業(yè)比例;
(2)求這類企業(yè)產(chǎn)值增長率的平均數(shù)與標(biāo)準(zhǔn)差的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).(精確到0.01)
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,我國新能源產(chǎn)業(yè)迅速發(fā)展.以下是近幾年某新能源產(chǎn)品的年銷售量數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
新能源產(chǎn)品年銷售(萬個(gè)) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)請畫出上表中年份代碼與年銷量的數(shù)據(jù)對應(yīng)的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷.
與中哪一個(gè)更適宜作為年銷售量關(guān)于年份代碼的回歸方程類型;
(2)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2019年某新能源產(chǎn)品的銷售量(精確到0.01).
參考公式:,.
參考數(shù)據(jù):,,,,,,,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)的圖像與軸無交點(diǎn),求的取值范圍;
(2)若方程在區(qū)間上存在實(shí)根,求的取值范圍;
(3)設(shè)函數(shù),,當(dāng)時(shí)若對任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.動(dòng)點(diǎn)E和F分別在線段BC和DC上,且.
(1)當(dāng)λ,求||;
(2)求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com