【題目】已知函數(shù),,若關(guān)于x的方程3個不同的實數(shù)根,則實數(shù)a的取值集合為________.

【答案】

【解析】

,根據(jù)關(guān)于 x的方程3個不同的實數(shù)根,分所以方程1個根,在2個根和方程2個根,在1個根,利用判別式法和導(dǎo)數(shù)法求解.

,

因為關(guān)于 x的方程3個不同的實數(shù)根,

如圖所示:

.

當(dāng)時,若方程1個實數(shù)根,

聯(lián)立得,即

,

解得:

此時,

,

當(dāng)時,,當(dāng)時,,

所以時,函數(shù)取得極小值:,

所以當(dāng)時,方程1個根,在2個根,符合題意.

當(dāng)時,若方程2個實數(shù)根,

,解得:,

此時則需方程1個根,

所以,

當(dāng)時,,當(dāng)時,,

所以時,函數(shù)取得極小值:,

,

,

解得,

所以,符合題意.

綜上:若關(guān)于x的方程3個不同的實數(shù)根,則實數(shù)a的取值集合為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點到點的距離與到直線的距離的比值為

1)求動點的軌跡的方程;

2)過點的直線與點的軌跡交于兩點,設(shè)點,到直線的距離分別為,,當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如表:

x

1

2

3

4

y

1

m

n

4

如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對m賦了三個值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,,對應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯誤的是(

參考公式:線性回歸方程中,其中,.相關(guān)系數(shù)

A.三條回歸直線有共同交點B.相關(guān)系數(shù)中,最大

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個,在水平桌面上無滑動滾動一周,它們的中心的運動軌跡長分別為,,,,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司對旗下的甲、乙兩個門店在19月份的營業(yè)額(單位:萬元)進行統(tǒng)計并得到如圖折線圖.

下面關(guān)于兩個門店營業(yè)額的分析中,錯誤的是( )

A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元

B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店營業(yè)額的平均值在[20,25]內(nèi)

C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢

D.乙門店在這9個月份中的營業(yè)額的極差為25萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是各項均為正數(shù)的無窮數(shù)列,且滿足.

1)若,,求a的值;

2)設(shè)數(shù)列滿足,其前n項的和為.

①求證:是等差數(shù)列;

②若對于任意的,都存在,使得成立.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了調(diào)查本小區(qū)業(yè)主對物業(yè)服務(wù)滿意度的真實情況,對本小區(qū)業(yè)主進行了調(diào)查,調(diào)查中問了兩個問題1:你的手機尾號是不是奇數(shù)?問題2:你是否滿意物業(yè)的服務(wù)?調(diào)查者設(shè)計了一個隨機化裝置,其中裝有大小、形狀和質(zhì)量完全相同的白球和紅球,每個被調(diào)查者隨機從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個問題,摸到紅球的業(yè)主回答第二個問題,回答的人往一個盒子中放一個小石子,回答的人什么都不要做由于問題的答案只有,而且回答的是哪個問題別人并不知道,因此被調(diào)查者可以毫無顧慮地給出符合實際情況的答案.已知某小區(qū)80名業(yè)主參加了問卷,且有47名業(yè)主回答了,由此估計本小區(qū)對物業(yè)服務(wù)滿意的百分比大約為(

A.85%B.75%C.63.5%D.67.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上,點在圓上,且圓上的所有點均在橢圓外,若的最小值為,且橢圓的長軸長恰與圓的直徑長相等,則下列說法正確的是(

A.橢圓的焦距為B.橢圓的短軸長為

C.的最小值為D.過點的圓的切線斜率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線與曲線相交于兩點.若點恰為線段的三等分點,求的值.

查看答案和解析>>

同步練習(xí)冊答案