設(shè)a,b,c∈R,求證:
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c).
考點:有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于2(a2+b2)≥(a+b)2,可得
2
a2+b2
≥|a+b|,同理可得
2
b2+c2
≥|b+c|,即可證明.
解答: 證明:∵2(a2+b2)≥(a+b)2,
2
a2+b2
≥|a+b|≥a+b,
同理可得
2
b2+c2
≥|b+c|≥b+c,
2
a2+c2
|a+c|≥a+c,
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c).
點評:本題考查了基本不等式的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
2ax3
1+|x|
(a>0,x∈R),已知區(qū)間A=[
m2
2
,
n2
2
](m<n),集合B={f(x)|m≤x≤n},則使得A=B成立的實數(shù)a的取值范圍是( 。
A、a>
1
4
B、a≤
1
4
C、0<a≤
5
4
D、0<a<
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(必做題)已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)當a>1時,f(x)的單調(diào)增區(qū)間為
 

(2)若函數(shù)y=|f(x)-t|-1有三個零點,則t的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:β∈(0,
π
4
),α∈(
π
4
,
4
),且cos(
π
4
-α)=
4
5
,sin(
4
+β)=
5
13
.求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體A1B1C1D1-ABCD的高為
2
,兩個底面均為邊長1的正方形.
(1)求證:BD∥平面A1B1C1D1;
(2)求異面直線A1C與AD所成角的大;
(3)求二面角A1-BD-A的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于實數(shù)x的不等式x3-3x2-9x≥m對任意x∈[-2,2]恒成立,則m的取值范圍是( 。
A、(-∞,5]
B、(-∞,-22]
C、(-∞,-2]
D、[-14,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動弦AB,P是AB中點,則動點P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.其中正確命題的個數(shù)(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知矩形ABCD,P為平面ABCD外一點,M、N分別為BC、PD的中點,且滿足
MN
=x
.
AB
+y
AD
+z
AP
,則實數(shù)x,y,z的值分別為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的焦點坐標為(4,0),(-4,0),橢圓上一點到兩焦點的距離之和為10,則橢圓的標準方程為(  )
A、
x2
16
+
y2
9
=1
B、
x2
25
+
y2
9
=1
C、
x2
9
+
y2
25
=1
D、
x2
25
+
y2
16
=1

查看答案和解析>>

同步練習冊答案