8.“(a-1)(4a-2a+1)>0”是“定積分$\int_0^{\frac{π}{6}}{acosxdx>1}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)不等式的性質結合積分的公式,利用充分條件和必要條件的定義進行判斷即可.

解答 解:∵${4^a}-{2^a}+1={({{2^a}-\frac{1}{2}})^2}+\frac{3}{4}>0$,
∴(a-1)(4a-2a+1)>0?a>1.
定積分${∫}_{0}^{\frac{π}{6}}$acosxdx=asinx|${\;}_{0}^{\frac{π}{6}}$=asin$\frac{π}{6}$-asin0=$\frac{1}{2}$a>1,
∴a>2.
則“(a-1)(4a-2a+1)>0”是“定積分$\int_0^{\frac{π}{6}}{acosxdx>1}$”的必要不充分條件,
故選:B

點評 本題主要考查充分條件和必要條件的判斷,結合不等式的性質以及積分的公式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知扇形的弧長為6,圓心角弧度數(shù)為3,則其面積為(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓C:x2+y2-2x-4y+m=0.
(I)求m的取值范圍;
(II)當m=-11時,若圓C與直線x+ay-4=0交于M,N兩點,且∠MCN=120°,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a2+a8=8,則數(shù)列{an}的前9項和S9=36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=x+xlnx,g(x)=x-lnx-2,
(1)若x0是g(x)在(1,+∞)的一個零點,且x0∈(n,n+1),n∈Z,求n;
(2)若k∈Z,k<$\frac{f(x)}{x-1}$對任意x>1恒成立,求k的最大值;
(3)設F(x)=2g(x)+x2+(-a-2)x+4,其導函數(shù)為F′(x),若F(x)的圖象交x軸于點C(x1,0),D(x2,0)兩點,且線段CD的中點為N(s,0),試問s是否為F′(x)=0的根?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知復數(shù)z=3+4i對應點為A,且z恰好為二次方程x2+px+q=0的一個根.
(1)求實數(shù)p,q的值;
(2)若點O為原點,求與$\overrightarrow{OA}$同向的單位向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,是奇函數(shù),又在定義域內為減函數(shù)的是( 。
A.y=$\frac{2}{x}$B.y=3-sinxC.y=-tanxD.y=-2x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.直線2x+3y-6=0分別交x,y軸于A,B兩點,點P在直線y=-x-1上,則|PA|+|PB|的最小值是$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在數(shù)軸上,設點x在|x|≤3中按均勻分布出現(xiàn),記點a∈[-1,2]為事件A,則P(A)等于( 。
A.1B.$\frac{1}{2}$C.0D.$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案