設(shè)二次函數(shù)滿足下列條件:
①當時,的最小值為0,且關(guān)于直線x=-1對稱;
②當x[-1, 1] 時,≤(x-1)2+1恒成立。
則的解析式
科目:高中數(shù)學 來源:2012-2013江蘇省徐州市高一上學期期中考試數(shù)學試卷(解析版) 題型:解答題
設(shè)二次函數(shù)滿足下列條件:①當時,的最小值為,且圖像關(guān)于直線對稱;②當時,恒成立.
(1)求的值;
(2)求的解析式;
(3)若在區(qū)間上恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三數(shù)學10月單元練習(函數(shù)一) 題型:解答題
(本小題滿分14分)設(shè)二次函數(shù)滿足下列條件:
①當∈R時,的最小值為0,且f (-1)=f(--1)成立;
②當∈(0,5)時,≤≤2+1恒成立。
(1)求的值;
(2)求的解析式;
(3)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當∈時,就有成立。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年綏濱一中高二下學期期末考試數(shù)學卷 題型:解答題
(本小題滿分12分)設(shè)二次函數(shù)滿足下列條件:
①當∈R時,的最小值為0,且f (-1)=f(--1)成立;
②當∈(0,5)時,≤≤2+1恒成立。
(1)求的值;
(2)求的解析式;
(3)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當∈時,就有成立。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年安徽省高一第一學期期中考試理科數(shù)學卷 題型:解答題
(本小題滿分14分)
設(shè)二次函數(shù)滿足下列條件:
①當時,其最小值為0,且成立;
②當時,恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的實數(shù),使得存在,只要當時,就有成立
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com