兩個(gè)變量yx的回歸模型中,分別選擇了4個(gè)不同模型,計(jì)算出它們的相關(guān)指數(shù)R2如下,其中擬合效果最好的模型是(  )

A.模型1(相關(guān)指數(shù)R2為0.97)

B.模型2(相關(guān)指數(shù)R2為0.89)

C.模型3(相關(guān)指數(shù)R2為0.56)

D.模型4(相關(guān)指數(shù)R2為0.45)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).

(1)求橢圓C的方程;

(2)求·的取值范圍;

(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知A,B分別是橢圓C1: +=1的左、右頂點(diǎn),P是橢圓上異于A,B的任意一點(diǎn),Q是雙曲線C2: - =1上異于A,B的任意一點(diǎn),a>b>0.

(1)若P(,),Q(,1),求橢圓C1的方程;

(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


樣本中共有五個(gè)個(gè)體,其值分別為a,2,3,4,5,若該樣本的平均值為3,則樣本方差為(  )

A.  B.  C.  D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


為征求個(gè)人所得稅法修改建議,某機(jī)構(gòu)對(duì)當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1 000,1 500)).

(1)求居民月收入在[3 000,4 000)的頻率;

(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10 000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[2 500,3 000)的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


下列說法:

①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

②設(shè)有一個(gè)回歸方程=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

③線性回歸方程必過點(diǎn)();

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系.

其中錯(cuò)誤的個(gè)數(shù)是(  )

A.0  B.1  C.2  D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在一次隨機(jī)試驗(yàn)中,彼此互斥的事件A、B、CD的概率分別是0.2、0.2、0.3、0.3,則下列說法正確的是(  )

A.ABC是互斥事件,也是對(duì)立事件

B.BCD是互斥事件,也是對(duì)立事件

C.ACBD是互斥事件,但不是對(duì)立事件

D.ABCD是互斥事件,也是對(duì)立事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


我們把棱長要么為1 cm,要么為2 cm的三棱錐定義為“和諧棱錐”.在所有結(jié)構(gòu)不同的“和諧棱錐”中任取一個(gè),取到有且僅有一個(gè)面是等邊三角形的“和諧棱錐”的概率是(  )

A.                                    B. 

C.                                    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


同時(shí)隨機(jī)擲兩顆骰子,則至少有一顆骰子向上的點(diǎn)數(shù)小于4的概率為(  )

A.  B.  C.  D.

查看答案和解析>>

同步練習(xí)冊答案