已知的頂點A(0,1),AB邊上的中線CD所在直線方程為,AC邊上的高BH所在直線方程為.
(1)求的項點B、C的坐標;
(2)若圓M經(jīng)過不同的三點A、B、P(m、0),且斜率為1的直線與圓M相切于點P
求:圓M的方程.
(1);(2).
解析試題分析:(1)由題意可知在直線上,又在軸,即,聯(lián)立可求,又因為AC邊上的高BH所在直線方程為,可得點在軸,設為,由是 邊的中點,根據(jù)中點坐標公式,把的坐標用表示出來,進而把的坐標代入直線中,求;(2)弦的垂直平分線過圓心,故先求弦的垂直平分線,再求弦垂直平分線,聯(lián)立求交點,即得圓心坐標,其中坐標都是用表示,再根據(jù)過圓心和切點的直線必與斜率為1的直線垂直,∴,列式求,從而圓心確定,再根據(jù)兩點之間距離公式求半徑,圓的方程確定.
試題解析:(1)AC邊上的高BH所在直線方程為y=0,所以AC: x=0
又CD: ,所以C(0, -) 2分
設B(b, 0),則AB的中點D(),代入方程
解得b="2," 所以B(2, 0) 4分
(2)由A(0, 1), B(2, 0)可得,圓M的弦AB的中垂線方程為
BP也是圓M的弦,所以圓心在直線上. 設圓心M
因為圓心M在直線上,所以 ①
又因為斜率為1的直線與圓M相切于點P,所以.
即,整理得: ②
由①②可得:,所以,半徑
所以所求圓的方程為 12分
考點:1、直線的方程;2、圓的方程;3、兩條直線的位置關系.
科目:高中數(shù)學 來源: 題型:解答題
已知直線:
(Ⅰ)求證:不論實數(shù)取何值,直線總經(jīng)過一定點.
(Ⅱ)若直線與兩坐標軸的正半軸圍成的三角形面積最大,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(文)已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線 相切.
(1)求圓的標準方程;
(2)設直線與圓相交于兩點,求實數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直線經(jīng)過兩點P1(4,-2)和P2(-1,8)。
(1)求直線的斜率;
(2)求直線的一般式方程,并把它寫成斜截式、截距式方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)在平面直角坐標系中,已知點A(-2,1),直線。
(1)若直線過點A,且與直線垂直,求直線的方程;
(2)若直線與直線平行,且在軸、軸上的截距之和為3,求直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com