8.設(shè)數(shù)列{an}的前n項和為Sn,a1=4,數(shù)列{$\sqrt{{S}_{n}}$}是公差為2的等差數(shù)列.求數(shù)列{an}的通項公式.

分析 根據(jù)等差數(shù)列的性質(zhì),結(jié)合數(shù)列{$\sqrt{{S}_{n}}$}是公差為2的等差數(shù)列,即可得到$\sqrt{{S}_{n}}$=2n,再根據(jù)an=Sn-Sn-1即可求出數(shù)列{an}的通項公式.

解答 解:∵a1=4,
∴$\sqrt{{S}_{1}}$=$\sqrt{{a}_{1}}$=2,
∴$\sqrt{{S}_{n}}$=2+2(n-1)=2n,
∴Sn=4n2
當(dāng)n≥2時,an=Sn-Sn-1=4n2-4(n-1)2=8n-4,
a1=1滿足an=8-4=4,
∴an=8n-4.

點評 本題主要考查數(shù)列通項公式的求解,根據(jù)等差數(shù)列的通項公式求出Sn的表達式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,OA=$\overrightarrow{a}$,OB=$\overrightarrow$,OC=3$\overrightarrow{a}$-2$\overrightarrow$,求證:A,B,C三點在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列圓的方程:
(1)圓心為(3,0),且與圓x2+(y+4)2=9外切;
(2)經(jīng)過點(3,0)和(0,3).圓心在直線x+y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.$\overrightarrow{OA}$-$\overrightarrow{OD}$+$\overrightarrow{AD}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>b>0),A1,A2是雙曲線實軸的兩個端點,MN是垂直于實軸所在直線的弦的兩個端點,則A1M與A2N交點的軌跡方程是( 。
A.$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1B.$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1C.$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1D.$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{m}$=(3,1),$\overrightarrow{n}$=(1,2),則|$\overrightarrow{m}$+$\overrightarrow{n}$|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)F1、F2為橢圓$\frac{{x}^{2}}{4}$+y2=1的兩個焦點,P為橢圓上的一點.當(dāng)△F1PF2的面積為1,$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在長方體ABCD-A1B1C1D1中,對角線B1D與平面A1BC1交于E點.記四棱錐E-A1B1C1D1的體積為V1,長方體ABCD-A1B1C1D1的體積為V2,則$\frac{{V}_{1}}{{V}_{2}}$的值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.△ABC中,角A,B,C所對應(yīng)的邊分別為b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大。
(2)若△ABC的面積為S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

同步練習(xí)冊答案