已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1]
(1)若f(x)的定義域為R,求實數(shù)a的取值范圍;
(2)若f(x)的值域為R,求實數(shù)a的取值范圍.
分析:(1)因為f(x)的定義域為R,所以對數(shù)的真數(shù)一定大于0恒成立,討論二次項系數(shù)為0不成立,系數(shù)不為0時,得到系數(shù)大于0且根的判別式小于0求出a的范圍即可;
(2)因為函數(shù)值域為R,討論二次項系數(shù)為0時,不成立,系數(shù)不為0時,讓系數(shù)大于0且根的判別式大于等于0求出a的范圍即可.
解答:解:(1)f(x)的定義域為R∴(a2-1)x2+(a+1)x+1>0恒成立
當(dāng)a2-1=0時,得a=-1,a=1不成立
當(dāng)a2-1≠0時,
a2-1>0
△=(a+1)2-4(a2-1)<0
解得a>
5
3
或a<-1
綜上得a>
5
3
或a≤-1
(2)當(dāng)a2-1=0時,得a=1,a=-1不成立
當(dāng)a2-1≠0時,
a2-1>0
△=(a+1)2-4(a2-1)≥0
解得1<a≤
5
3

綜上得1≤a≤
5
3
點評:考查學(xué)生理解對數(shù)函數(shù)定義域和值域的能力,以及理解函數(shù)恒成立條件的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案