【題目】社會公眾人物的言行一定程度上影響著年輕人的人生觀、價值觀.某媒體機構(gòu)為了解大學生對影視、歌星以及著名主持人方面的新聞(簡稱:“星聞”)的關(guān)注情況,隨機調(diào)查了某大學的位大學生,得到信息如下表:
(Ⅰ)從所抽取的人內(nèi)關(guān)注“星聞”的大學生中,再抽取三人做進一步調(diào)查,求這三人性別不全相同的概率;
(Ⅱ)是否有以上的把握認為“關(guān)注‘星聞’與性別有關(guān)”,并說明理由;
(Ⅲ)把以上的頻率視為概率,若從該大學隨機抽取位男大學生,設(shè)這人中關(guān)注“星聞”的人數(shù)為,求的分布列及數(shù)學期望.
附: .
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(Ⅰ) ;(Ⅱ)見解析;(Ⅲ)見解析 .
【解析】試題分析:
(Ⅰ)利用對立事件可得這三人性別不全相同的概率為 ;
(Ⅱ)利用公式求得 ,則有 以上的把握認為“關(guān)注‘星聞’與性別有關(guān)”.
(Ⅲ)利用題意結(jié)合二項分布的公式求得分布列,然后計算可得數(shù)學期望為 .
試題解析:
(Ⅰ)由已知,知所求概率.
(Ⅱ)由于 .
故有以上的把握認為“關(guān)注‘星聞’與性別有關(guān)”.
(Ⅲ)由題意,可得任意一名男大學生關(guān)注“星聞”的概率為,不關(guān)注“星聞”的概率為.
所有可能取值為.
; ; ; ;
.
的分布列為
因為,所以.
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,為正三角形,平面平面,,,.
(1)求證:平面平面;
(2)求三棱錐的體積;
(3)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)f(x)=xα,當x>1時,恒有f(x)<x,則α的取值范圍是( )
A. (0,1) B. (-∞,1)
C. (0,+∞) D. (-∞,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),對任意實數(shù), .
(1)在上是單調(diào)遞減的,求實數(shù)的取值范圍;
(2)若對任意恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入 萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;
(Ⅲ)若廣告投入萬元時,實際銷售收益為.萬元,求殘差.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),若滿足①;②當,且時,都有;③當,且時, ,則稱為“偏對函數(shù)”.現(xiàn)給出四個函數(shù): ; . 則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐中,,,和都是邊長為2的等邊三角形,設(shè)在底面的射影為.
(1)求證:是中點;
(2)證明:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣城出租車的收費標準是:起步價是元(乘車不超過千米);行駛千米后,每千米車費1.2元;行駛千米后,每千米車費1.8元.
(1)寫出車費與路程的關(guān)系式;
(2)一顧客計劃行程千米,為了省錢,他設(shè)計了三種乘車方案:
①不換車:乘一輛出租車行千米;
②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;
③分三段乘車:每乘千米換一次車.
問哪一種方案最省錢.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com