分析:(1)看f(-x)與f(x)的關(guān)系即可.
(2)先把f(x)分離常數(shù),再由復(fù)合函數(shù)的單調(diào)性可得
(3)先把f(x)分離常數(shù),再對(duì)每一部分求函數(shù)值,最后綜合即可.
解答:解:(1)∵定義域是實(shí)數(shù)集且f(-x)=
=
=-f(x)
∴f(x)是奇函數(shù).
(2)∵f(x)=
=1-
=1-
又∵y=2
-x在實(shí)數(shù)集上是減函數(shù)
由復(fù)合函數(shù)的單調(diào)性可得f(x)是減函數(shù).
(3)由y=2
-x在實(shí)數(shù)集上是減函數(shù)且函數(shù)值恒為正得1+2
-x>1,
∴0<
<2,∴-1<f(x)<1
∴f(x)的值域 (-1,1).
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的判斷.判斷函數(shù)的奇偶性時(shí),應(yīng)先確定定義域是否關(guān)于原點(diǎn)對(duì)稱:關(guān)于原點(diǎn)對(duì)稱的話,再看f(-x)與f(x)的關(guān)系,若f(-x)=f(x)是偶函數(shù),若f(-x)=-f(x)是奇函數(shù).定義域不關(guān)于原點(diǎn)對(duì)稱的話不存在奇偶性.