【題目】將甲、乙兩顆骰子先后各拋一次,分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點數(shù).圖中三角形陰影部分的三個頂點為、)和.

1)若點落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為,求事件的概率;

2)若點落在直線為常數(shù))上,且使此事件的概率最大,求的值.

【答案】1; 2,.

【解析】

1)由題意知,本題是一個古典概型,試驗發(fā)生包含的基本事件總數(shù)為6×6,畫出圖形,滿足條件的事件可以列舉出有6個整點,根據(jù)古典概型概率公式得到結(jié)果.
2)點落在為常數(shù))的直線上,且使此事件的概率最大,只需基本事件最多,由,畫出圖形,直線時適合,求得,此時有6個整點,得到結(jié)果.

基本事件總數(shù)為,

如圖滿足在陰影三角形內(nèi)的有:

時,,23;

時,,2;

時,

共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,16個點落在條件區(qū)域內(nèi),

.

2)點落在為常數(shù))的直線上,且使此事件的概率最大. 只需基本事件最多.
,將直線平移,如圖可知,當.

即當時,(1,6),(2,5),(34),(4,3),(5,2),(6,1)基本事件最多,共有6
此時最大.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點處的切線方程;

2)若只有一個零點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了檢查生產(chǎn)產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.

甲流水線樣本的頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

9

10

17

8

6

乙流水線樣本的頻率分布直方圖

1)根據(jù)圖形,估計乙流水線生產(chǎn)的產(chǎn)品的該項質(zhì)量指標值的中位數(shù);

2)設(shè)該企業(yè)生產(chǎn)一件合格品獲利100元,生產(chǎn)一件不合格品虧損50元,若某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了1000件產(chǎn)品,若將頻率視為概率,則該企業(yè)本月的利潤約為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠利用隨機數(shù)表對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,,599600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點.

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一商場對每天進店人數(shù)和商品銷售件數(shù)進行了統(tǒng)計對比,得到如下表格:

人數(shù)

10

15

20

25

30

35

40

件數(shù)

4

7

12

15

20

23

27

1)在答題卡給定的坐標系中畫出表中數(shù)據(jù)的散點圖,并由散點圖判斷銷售件數(shù)與進店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說明理由);

2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預測進店人數(shù)為80時,商品銷售的件數(shù)(結(jié)果保留整數(shù)).

(參考數(shù)據(jù):,,,

參考公式:,,其中,為數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學先修課程,是在高中開設(shè)的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業(yè)生涯做好準備.某高中成功開設(shè)大學先修課程已有兩年,共有250人參與學習先修課程.

(Ⅰ)這兩年學校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應列聯(lián)表,并根據(jù)列聯(lián)表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計

學習大學先修課程

250

沒有學習大學先修課程

總計

150

(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學生先修課程的學習,在這5名優(yōu)等生中任選3人進行測試,求這3人中至少有1名參加了大學先修課程學習的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.

(1)為迎接冬奧會,某社區(qū)積極推動冬奧會項目在社區(qū)青少年中的普及,并統(tǒng)計了近五年來本社區(qū)冬奧項目青少年愛好者的人數(shù)(單位:人)與時間(單位:年),列表如下:

依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).

(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

附:相關(guān)系數(shù)公式,參考數(shù)據(jù).

(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.

方案一:每滿600元可減100元;

方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v

兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數(shù)學期望的角度分析應該選擇哪種優(yōu)惠方案.

查看答案和解析>>

同步練習冊答案