(本小題滿分13分)
已知二次函數(shù),直線,直線(其中,為常數(shù));.若直線1、2與函數(shù)的圖象以及、軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求、、的值;
(Ⅱ)求陰影面積關(guān)于的函數(shù)的解析式;
(Ⅲ)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點(diǎn)?若存在,求出的值;若不存在,說明理由.
解:(I)由圖形可知二次函數(shù)的圖象過點(diǎn)(0,0),(8,0),并且的最大值為16
則,
∴函數(shù)的解析式為……………4分
(Ⅱ)由得
∵0≤t≤2,∴直線與的圖象的交點(diǎn)坐標(biāo)為(……………6分
由定積分的幾何意義知:
……………9分
(Ⅲ)令
因為,要使函數(shù)與函數(shù)有且僅有2個不同的交點(diǎn),則函數(shù)的圖象與軸的正半軸有且只有兩個不同的交點(diǎn)
∴=1或=3時,
當(dāng)∈(0,1)時,是增函數(shù),當(dāng)∈(1,3)時,是減函數(shù),當(dāng)∈(3,+∞)時,是增函數(shù)……………12分
又因為當(dāng)→0時,;當(dāng)
所以要使有且僅有兩個不同的正根,必須且只須
即, ∴或
∴當(dāng)或時,函數(shù)與的圖象有且只有兩個不同交點(diǎn)。…………14分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com