【題目】已知二次函數(shù)

)若函數(shù)上單調(diào)遞減,求實數(shù)的取值范圍.

)是否存在常數(shù),當時, 在值域為區(qū)間?

【答案】(1) (2) 存在常數(shù) , 滿足條件.

【解析】試題分析:

(1)結(jié)合二次函數(shù)的對稱軸得到關(guān)于實數(shù)m的不等式,求解不等式可得實數(shù)的取值范圍為

(2) 在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù).據(jù)此分類討論:

①當時,

②當時,

③當

綜上可知,存在常數(shù), , 滿足條件.

試題解析:

∵二次函數(shù)的對稱軸為,

又∵上單調(diào)遞減,

,

即實數(shù)的取值范圍為

在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù).

①當時,在區(qū)間上, 最大, 最小,

,即

解得

②當時,在區(qū)間上, 最大, 最小,

,解得

③當,在區(qū)間上, 最大, 最小,

,即,

解得,

綜上可知,存在常數(shù) , 滿足條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資根據(jù)長期收益率市場預測,投資類產(chǎn)品的收益與投資額成正比投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬元資金全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人獨立地對某一技術(shù)難題進行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵a萬元.獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金a萬元;若只有2人攻克,則獎金獎給此二人,每人各得 萬元;若三人均攻克,則獎金獎給此三人,每人各得 萬元.設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合=冪函數(shù)=的圖象不過原點,則集合A的真子集的個數(shù)為

A. 1 B. 2 C. 3 D. 無數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意、恒成立,當時,.

1求證上是單調(diào)遞增函數(shù);

2已知,解關(guān)于的不等式;

3,且不等式對任意恒成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是(
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場出售兩款型號不同的手機,由于市場需求發(fā)生變化,第一款手機連續(xù)兩次提價10%,第二款手機連續(xù)兩次降價10%,結(jié)果都以1210元出售.

(1)求第一款手機的原價;

(2)若該商場同時出售兩款手機各一部,求總售價與總原價之間的差額.(結(jié)果精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2(1+2sin2θ)=3.
(Ⅰ)寫出C1的普通方程和C2的直角坐標方程;
(Ⅱ)直線C1與曲線C2相交于A,B兩點,點M(1,0),求||MA|﹣|MB||.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象向右平移兩個單位,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個實根,求的取值范圍;

(3)若函數(shù)的圖象關(guān)于直線對稱,設(shè),已知對任意的恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案