已知集合M={a,b,c,d},P={x,y,z},則從M到P能建立不同映射的個數(shù)是__________.

解析:集合M中有4個元素,集合P中有3個元素,則從M到P能建立34=81個不同的映射.

答案:81

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合M={a,b,c},N={b,c,d},則下列關(guān)系式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={a,b,c}中的三個元素可構(gòu)成某一三角形的三邊長,那么此三角形一定不是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={a,b,-(a+b)},a∈R,b∈R,,集合P={1,0,-1},映射f:x→x表示把集合M中的元素x映射到集合P中仍為x,則以a,b為坐標的點組成的集合S有子集
64
64
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={a,b,c},N={-1,0,1},映射f:M→N滿足:f(a)-f(b)=f(c),那么映射f的個數(shù)為(  )

A.2

B.4

C.5

D.7

查看答案和解析>>

同步練習冊答案