已知函數(shù)

(Ⅰ)求函數(shù)的最小值;

(Ⅱ)求證:

(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè)函數(shù),是否存在“分界線”?若存在,求出的值;若不存在,請說明理由.

 

【答案】

(Ⅰ)的最小值為;(Ⅱ)詳見解析;(Ⅲ),

【解析】

試題分析:(Ⅰ)求導(dǎo)得:,由此可得函數(shù)上遞減,上遞增,

從而得的最小值為

(Ⅱ)注意用第(Ⅰ)小題的結(jié)果.由(Ⅰ)知.這個不等式如何用?結(jié)合所在證的不等式可以看出,可以兩端同時乘以變形為:,把換成,在這個不等式中令然后將各不等式相乘即得.

(Ⅲ)結(jié)合題中定義可知,分界線就是一條把兩個函數(shù)的圖象分開的直線.那么如何確定兩個函數(shù)是否存在分界線?顯然,如果兩個函數(shù)的圖象沒有公共點,則它們有無數(shù)條分界線,如果兩個函數(shù)至少有兩個公共點,則它們沒有分界線.所以接下來我們就研究這兩個函數(shù)是否有公共點.為此設(shè).通過求導(dǎo)可得當(dāng)取得最小值0,這說明的圖象在處有公共點.如果它們存在分界線,則這條分界線必過該點.所以設(shè)的“分界線”方程為.由于的最小值為0,所以,所以分界線必滿足.下面就利用這兩個不等式來確定的值.

試題解析:(Ⅰ)解:因為,令,解得,

,解得,

所以函數(shù)上遞減,上遞增,

所以的最小值為.                            3分

(Ⅱ)證明:由(Ⅰ)知函數(shù)取得最小值,所以,即

兩端同時乘以,把換成,當(dāng)且僅當(dāng)時等號成立.

得,,

,

將以上各式相乘得:

.         9分

(Ⅲ)設(shè).

所以當(dāng)時,;當(dāng)時,

因此取得最小值0,則的圖象在處有公共點

設(shè)存在 “分界線”,方程為.

恒成立,

恒成立.

所以成立.因此.

下面證明成立.

設(shè).

所以當(dāng)時,;當(dāng)時,.

因此取得最大值0,則成立.

所以,.                                   14分

考點:1、導(dǎo)數(shù)的應(yīng)用;2、函數(shù)與不等式;3、新定義概念.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆福建省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)請用“五點法”作出函數(shù)在區(qū)間上的簡圖.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省度高二下學(xué)期第二次檢測考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).        

(Ⅰ)求的最小值;

(Ⅱ)若對所有都有,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;

(ⅱ)若是兩個不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省自貢市高三下學(xué)期第三次診斷性檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),.

(1)求曲線f(x)在點A處的切線方程;

(II)討論函數(shù)f(x)的單調(diào)性;

(III)是否存在實數(shù),使當(dāng)時恒成立?若存在,求 出實數(shù)a;若不存在,請說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山西省忻州市2009-2010學(xué)年高一第二學(xué)期聯(lián)考試題(B類) 題型:解答題

 

 (本小題滿分12分)

已知函數(shù)

(1)求實數(shù)的值;

(2)當(dāng)xÎ時,求函數(shù)的值域.

 

查看答案和解析>>

同步練習(xí)冊答案