如圖,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)證明:A1C⊥AB;
(2)設(shè)BC=AC=2,求三棱錐C-A1BC1的體積.

解:(1)證明:在△ACA1中,
由余弦定理得=3AC2,
,
,∴,∴A1C⊥AC.
∵BC⊥平面AA1C1C,∴BC⊥A1C.
∵AC∩BC=C,∴A1C⊥平面ABC,∴A1C⊥AB.
(2)作A1E⊥CC1,CF⊥AA1
則A1E⊥平面BCC1B1,四邊形A1ECF為矩形.
在Rt△ACF中,CF=ACsin60°=
==4,
===
分析:(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;
(2)利用三棱錐的體積計算公式和等積變形即可求出.
點(diǎn)評:熟練掌握線面垂直的判定定理和性質(zhì)定理及等積變形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步練習(xí)冊答案