已知數(shù)列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求滿足an+1=|bn|的所有正整數(shù)n的集合;
(2)若n≠16,求數(shù)列的最大值和最小值;
(3)記數(shù)列{anbn}的前n項和為Sn,求所有滿足S2m=S2n(m<n)的有序整數(shù)對(m,n).
(1){n|n≥15,n∈N*}(2)(n=18),最小值-2(n=17)(3)S16=S14,m=7,n=8
【解析】(1)an+1=|bn|,n-15=|n-15|.
當n≥15時,an+1=|bn|恒成立;
當n<15時,n-15=-(n-15),n=15(舍去).
∴n的集合為{n|n≥15,n∈N*}.
(2)=.
(ⅰ)當n>16時,n取偶數(shù)時,=,
當n=18時,=,無最小值;n取奇數(shù)時,=-1-,
n=17時,=-2,無最大值.
(ⅱ)當n<16時,=.
當n為偶數(shù)時,==-1-.
n=14時,=-,=-;
當n為奇數(shù)時,==1+,
n=1時,=1-=,n=15時,=0.
綜上,最大值為(n=18),最小值-2(n=17).
(3)當n≤15時,bn=(-1)n-1(n-15),a2k-1b2k-1+a2kb2k=2(16-2k)≥0,
當n>15時,bn=(-1)n(n-15),a2k-1b2k-1+a2kb2k=2(2k-16)>0,其中a15b15+a16b16=0,
∴S16=S14,m=7,n=8.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第4課時練習卷(解析版) 題型:填空題
a、b、c為三條不重合的直線,α、β、γ為三個不重合平面,現(xiàn)給出六個命題:
① a∥b;② a∥b;③ α∥β;
④ α∥β;⑤ α∥a;⑥ a∥α.
其中正確的命題是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第八章第1課時練習卷(解析版) 題型:解答題
已知:a、b、c、d是不共點且兩兩相交的四條直線,求證:a、b、c、d共面
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:解答題
已知數(shù)列{an},其前n項和為Sn.
(1)若對任意的n∈N,a2n-1,a2n+1,a2n組成公差為4的等差數(shù)列,且a1=1,=2013,求n的值;
(2)若數(shù)列是公比為q(q≠-1)的等比數(shù)列,a為常數(shù),求證:數(shù)列{an}為等比數(shù)列的充要條件為q=1+.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:填空題
已知{an}是等差數(shù)列,a1=1,公差d≠0,Sn為其前n項和.若a1,a2,a5成等比數(shù)列,則S8=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第6課時練習卷(解析版) 題型:填空題
根據(jù)市場調查結果,預測某種家用商品從年初開始的n個月內累積的需求量Sn(萬件)近似地滿足關系式Sn=(21n-n2-5)(n=1,2,…,12),按此預測,在本年度內,需求量超過1.5萬件的月份是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第5課時練習卷(解析版) 題型:解答題
已知等差數(shù)列{an}的公差d=1,前n項和為Sn.
(1)若1,a1,a3成等比數(shù)列,求a1;
(2)若S5>a1a9,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第4課時練習卷(解析版) 題型:解答題
設f(x)=,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第五章第2課時練習卷(解析版) 題型:填空題
(1)已知等差數(shù)列{an}的公差為d(d≠0),且a3+a6+a10+a13=32.若am=8,則m=________.
(2)設等差數(shù)列{an}的前n項和為Sn,若S3=9,S6=36,則a7+a8+a9=________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com