已知f(
x
+1)=x+2
x
,則f(x)的解析式可取為( 。
A、x2+1(x≥0)
B、x2-1(x≥1)
C、x2-1(x≥0)
D、x2+1(x≥1)
考點(diǎn):函數(shù)解析式的求解及常用方法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=
x
+1
,由x≥0得t≥1,則x=(t-1)2,利用換元法,可得函數(shù)解析式.
解答: 解:令t=
x
+1
,
∵x≥0,∴t≥1
則x=(t-1)2,
∵f(
x
+1)=x+2
x
,
∴f(t)=(t-1)2+2(t-1),(t≥1)
∴f(x)=x2-1,(x≥1)
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)解析式的求解及常用方法,熟練掌握換元法求解析式的格式和步驟是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
lnx
1+x
-lnx,f(x)在x=x0處取得最大值,以下各式正確的序號(hào)為( 。
①x0<1;
②x0>1;
③f(x0)<x0;
④f(x0)=x0
⑤f(x0)>x0
A、①③B、①④C、②④D、②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
1-x2
-x-a=0有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為( 。
A、(-
2
2
B、[-
2
,
2
]
C、[-1,
2
D、[1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有如下四個(gè)結(jié)論:
①分別在兩個(gè)平面內(nèi)的兩條直線(xiàn)一定是異面直線(xiàn);
②過(guò)平面α的一條斜線(xiàn)有一個(gè)平面與平面α垂直;
③“x>0”是“x>1”的必要條件;
④命題“?x∈R,x2-x+1>0”的否定是“?x∈R,x2-x+1≤0”.
其中正確結(jié)論的個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿(mǎn)足
x+y-2≥0
kx-y+2≥0
y≥0
且z=y-x的最小值為-2,則k的值為(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)m,平面α、β,下列命題中真命題是 ( 。
A、m∥α,α∥β⇒m∥β
B、m⊥α,α∥β⇒m⊥β
C、m∥α,α⊥β⇒m⊥β
D、m⊥α,α⊥β⇒m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+2ax+4(0<a<3),其圖象上兩點(diǎn)的橫坐標(biāo)x1,x2滿(mǎn)足x1<x2,且x1+x2=1-a,則有( 。
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|lgx|,x>0
-x(x+4),x≤0
,則函數(shù)y=f(x)-3的零點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sin A:sin B:sin C=4:5:6,且a+b+c=30,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案