【題目】如圖,在棱長(zhǎng)為1的正方體中,點(diǎn),分別是棱,的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若∥平面,則線段長(zhǎng)度的取值范圍是
【答案】
【解析】
試題分析:如下圖所示:
分別取棱的中點(diǎn)M、N,連接MN,連接,∵M、N、E、F為所在棱的中點(diǎn),∴MN∥,EF∥,
∴MN∥EF,又MN平面AEF,EF平面AEF,∴MN∥平面AEF;
∵∥NE,=NE,∴四邊形為平行四邊形,
∴∥AE,又平面AEF,AE平面AEF,∴∥平面AEF,
又∩MN=N,∴平面∥平面AEF,∵P是側(cè)面內(nèi)一點(diǎn),且∥平面AEF,
則P必在線段MN上,在Rt△中,,
同理,在Rt△中,求得= ,∴△為等腰三角形,
當(dāng)P在MN中點(diǎn)O時(shí)⊥MN,此時(shí)最短,P位于M、N處時(shí)最長(zhǎng),
,,
所以線段長(zhǎng)度的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程.
(1)求該方程表示一條直線的條件;
(2)當(dāng)為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(3)已知方程表示的直線在軸上的截距為-3,求實(shí)數(shù)的值;
(4)若方程表示的直線的傾斜角是45°,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合I={1,2,3,4,5},選擇I的兩個(gè)非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有
A.50種 B.49種 C.48種 D.47種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極軸,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的圓心到直線的距離;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)討論和是函數(shù)的極大值還是極小值;
(2)過(guò)點(diǎn)作曲線的切線,求此切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元。該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖。
(Ⅰ)求;
(Ⅱ)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(Ⅲ)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等比數(shù)列的前n項(xiàng)和為Sn,已知a1=2,且4S1,3S2,2S3成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為類工人).現(xiàn)用分層抽樣方法(按類,類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(1)類工人和類工人中個(gè)抽查多少工人?
(2)從類工人中的抽查結(jié)果和從類工人中的抽查結(jié)果分別如下表1和表2.
表1:
表2:
① 先確定,,再完成下列頻率分布直方圖,就生產(chǎn)能力而言,類工人中個(gè)體間的差異程度與類工人中個(gè)體間的差異程度哪個(gè)更小?(不用計(jì)算,可通過(guò)觀察直方圖直接回答結(jié)論)
② 分別估計(jì)類工人和類工人生產(chǎn)能力的平均數(shù),并估計(jì)該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中
的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為(為坐標(biāo)原點(diǎn)),如圖,若拋物線與軸的交點(diǎn)為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè),為拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線交橢圓于點(diǎn)、兩點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com