已知函數(shù)f(x)=
px2+2
q-3x
是奇函數(shù),且f(2)=-
5
3

(1)求函數(shù)f(x)的解析式;
(2)求證:f(
1
x
)=f(x);
(3)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并加以證明.
(1)∵函數(shù)f(x)=
px2+2
q-3x
是奇函數(shù),∴
px2+2
q+3x
= -
px2+2
q-3x

∴q=0,∴f(x)=
px2+2
-3x

∵f(2)=-
5
3
,∴p=2
f(x)=-
2
3
(x+
1
x
)

(2)證明:∵f(x)=-
2
3
(x+
1
x
)

f(
1
x
)=-
2
3
(x+
1
x
)

∴f(
1
x
)=f(x);
(3)增函數(shù)
設x1<x2,x1,x2∈(0,1)
f(x1)-f(x2)=-
2
3
(x 1+
1
x 1
-x2-
1
x2
)
=-
2
3
×
(x1-x2)(1-x1x2)
x1x2

∵x1<x2,x1,x2∈(0,1)
∴f(x1)-f(x2)<0
∴函數(shù)f(x)在(0,1)上單調(diào)增
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
23
x3-2ax2+3x(x∈R).
(1)若a=1,點P為曲線y=f(x)上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:兩個連續(xù)函數(shù)(圖象不間斷)f(x)、g(x)在區(qū)間[a,b]上都有意義,則稱函數(shù)|f(x)+g(x)|在[a,b]上的最大值叫做函數(shù)f(x)與g(x)在區(qū)間[a,b]上的“絕對和”.已知函數(shù)f(x)=x3,g(x)=x3-3ax2+2.
(Ⅰ)若函數(shù)y=g(x)在點P(1,g(1))處的切線與直線y=x+2平行,求a的值;
(Ⅱ)在(Ⅰ)的條件下求漢順f(x)與g(x)在區(qū)間[0,2]上的“絕對值”
(Ⅲ)記f(x)與g(x)在區(qū)間[0,2]上的“絕對和”為h(a),a>
32
,且h(a)=2,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+c(a,b,c∈R,a≠0)的圖象過點P( 1,2),且在點P處的切線與直線x-3y=0垂直.
(1)若c∈[0,1),試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a>0,b>0且(-∞,m),(n,+∞)是f(x)的單調(diào)遞增區(qū)間,試求n-m-2c的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河北模擬)已知函數(shù)f(x)=alnx-bx2的圖象上一點P(2,f(2))處的切線方程為y=-3x+2ln2.
(Ⅰ)求a,b的值;
(Ⅱ)設g(x)=f(x)-mx,m∈R,如果g(x)的圖象與x軸交于點A(x1,0),B(x2,0),(x1<x2),AB中點為C(x0,0),求證:g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二階矩陣M=(
a1
0b
)有特征值λ1=2及對應的一個特征向量
e
1
=
1
1

(Ⅰ)求矩陣M;
(II)若
a
=
2
1
,求M10
a

(2)已知直線l:
x=1+
1
2
t
y=
3
2
t
(t為參數(shù)),曲線C1
x=cosθ
y=sinθ
  (θ為參數(shù)).
(Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的
1
2
倍,縱坐標壓縮為原來的
3
2
倍,得到曲線C2C,設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當m=5時,求函數(shù)f(x)的定義域;
(Ⅱ)若關于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

同步練習冊答案