精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<
π2
),且y=f(x)的最大值為2,其圖象相鄰兩對稱軸間的距離為2,并過點(1,2).
(Ⅰ)求φ;
(Ⅱ)計算f(1)+f(2)+…+f(2008).
分析:(Ⅰ)根據最值求出A,其圖象相鄰兩對稱軸間的距離為2,求出周期,確定ω,過點(1,2)求φ;
(Ⅱ)法一:根據函數的正確化簡f(1)+f(2)+…+f(2008).然后求出它的值即可.
法二:利用三角函數的平方關系,求出一個周期內的f(1)+f(3),f(2)+f(4)的值,然后求出表達式的值.
解答:解:(Ⅰ)y=Asin2(ωx+φ)=
A
2
-
A
2
cos(2ωx+2φ)

∵y=f(x)的最大值為2,A>0.
A
2
+
A
2
=2,A=2

又∵其圖象相鄰兩對稱軸間的距離為2,ω>0,
1
2
(
)=2,ω=
π
4

f(x)=
2
2
-
2
2
cos(
π
2
x+2φ)=1-cos(
π
2
x+2φ)

∵y=f(x)過(1,2)點,∴cos(
π
2
x+2φ)=-1

π
2
x+2φ=2kπ+π,k∈Z
,∴2φ=2kπ+
π
2
,k∈Z
,
φ=kπ+
π
4
,k∈Z
,
又∵0<φ<
π
2
,
φ=
π
4


(Ⅱ)解法一:∵φ=
π
4
,f(x)=2sin2(
π
4
x+
π
4
)

∴f(1)+f(2)+f(3)+f(4)=2+1+0+1=4.
又∵y=f(x)的周期為4,2008=4×502,
∴f(1)+f(2)+…+f(2008)=4×502=2008.
解法二:∵f(x)=2sin2(
π
4
x+φ)

f(1)+f(3)=2sin2(
π
4
+φ)+2sin2(
4
+φ)=2
,f(2)+f(4)=2sin2(
π
2
+φ)+2sin2(π+φ)=2
,
∴f(1)+f(2)+f(3)+f(4)=4.
又(±2,0)的周期為4,2008=4×502,
∴f(1)+f(2)+…+f(2008)=4×502=2008.
點評:本題考查三角函數的最值,三角函數的周期性及其求法,y=Asin(ωx+φ)中參數的物理意義,通過題目條件,正確求出函數的表達式,挖掘條件,利用周期正確解答是解好三角函數題目的關鍵,本題考查計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案